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ABSTRACT 

The d i f fus ion  of subs t i tu t iona l  impurit ies i n  1 1 1 - V  compounds has 

usual ly  been explained i n  the  l i t e r a t u r e  by a model of vacancy diffusion 

within a s ingle  subla t t ice .  Experimental evidence f o r  t h i s  model, how- 

ever, has been obtained so le ly  from measurements of t he  temperature vari- 
a t ion  of t h e  diffusion coeff ic ient .  

I n  the  work reported here, a radiotracer  technique w a s  used t o  study 

t h e  diffusion of sulfur ,  a subs t i tu t iona l  donor impurity, i n  Gap and G a A s  

as a function of temperature, su l fur  pressure, component pressure, and 

background doping of t he  host c rys ta l .  

ing t h e  experimental conditions has been stressed, and the  necessity of 

e lucidat ing diffusion mechanisms i n  compound semiconductors by determin- 

ing the quant i ta t ive  dependence of diffusion coef f ic ien t  on component 

pressure has been emphasized. Previous reports  i n  the  l i t e r a t u r e  con- 

cerning su l fu r  d i f fus ion  i n  G a A s  have been inadequate i n  both of these 

respects.  

previously. 

The importance of uniquely defin- 

The diffusion of su l fu r  i n  GaP has not been reported 

The r e s u l t s  reported here ind ica te  t h a t  the  var ia t ion  of t he  diffu-  

sion coef f ic ien t  w i t h  component pressure f o r  su l fur  i n  both GaP and G a A s  

i s  not i n  agreement w i t h  t he  model of vacancy diffusion within a s ingle  

subla t t ice .  The diffusion coeff ic ient  of su l fu r  i n  GaP w a s  found t o  be 

independent of phosphorus pressure, whereas the  diffusion coeff ic ient  of 

s u l m r  i n  ws varied as (pAS4) ‘ a t  low arsenic  pressures, and appeared 

t o  sa tura te  a t  a rsen ic  pressures greater than 0.3-1 atmospheres. The re- 

s u l t s  f o r  su l fu r  i n  Gap a r e  consistent w i t h  d i f fusion via  the  divacancy 

VGa-Vp, 
ment via the  gallium divacancy V -V G a  Ga’  
d ica tes  tha t  t h e  f a i l u r e  of t h e  sub la t t i ce  model t o  explain the  dependence 

of impurity diffusion on component pressure may be a general phenomenon 

i n  111-V compounds. 

while t he  diffusion of su l fur  i n  G a A s  can be explained by move- 

A review of t h e  l i t e r a t u r e  i n -  

The var ia t ion  of s o l u b i l i t y  i n  1 1 1 - V  compounds w i t h  impurity vapor 

pressure has, with f e w  exceptions, been ignored i n  the l i t e r a t u r e .  The 
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r e s u l t s  reported here indicate  t h a t  t he  dependence of surface concentra- 

t i o n  on su l fu r  'vapor densi ty  f o r  both GaP and G a A s  i s  not i n  agreement 

with the  usual model of incorporation of su l fur  atoms on i so la ted  anion 

sites. Possible reasons f o r  t h i s  discrepancy a r e  discussed. 

Incremental H a l l  and plasma re f l ec t ion  methods were used t o  study 

the  e l e c t r i c a l l y  ac t ive  pa r t  of t h e  impurity d i s t r ibu t ion  i n  the diffused 

layers.  A t  high concentrations, a la rge  concentration of the su l fu r  w a s  

found t o  be e l e c t r i c a l l y  inact ive a t  room temperature. This observation 

i s  of p rac t i ca l  importance s ince previous reports  i n  t h e  l i t e r a t u r e  con- 

cerning su l fu r  diffusion i n  G a A s  have of ten assumed complete ionizat ion 

of. t he  impurit ies i n  the  diffused layer.  Diffusion coef f ic ien ts  calcu- 

lated using t h i s  assumption may be i n  error .  
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Chapter I 

INTRODUCTION 

The diffusion of su l fur  i n  GaAs has been investigated by a number 

of workers [1-5]. Goldstein measured the  temperature dependence of the  

diffusion coef f ic ien ts  of a number of subs t i tu t iona l  impurit ies i n  GaAs 

and concluded t h a t  su l fur  diffused by means of vacancies within the  

a rsen ic  subla t t ice  [ 6 ] .  
by Goldstein, however, i s  considerably l a rge r  than that found by other 

experimenters [2]. Vieland car r ied  out a qua l i ta t ive  study of the effect 

of arsenic  pressure on su l fur  diffusion i n  G a A s  and concluded t h a t  t h e  

r e s u l t s  w e r e  i n  conf l ic t  w i t h  t h e  subla t t ice  model proposed by Goldstein 

[ b ] .  
vacancies i n  the  diffusion process w a s  suggested by Vieland, but no 

d e f i n i t e  model w a s  proposed. 

The ac t iva t ion  energy f o r  su l fur  i n  GaAs found 

The poss ib i l i t y  of the  par t ic ipa t ion  of nearest-neighbor gallium 

I n  t h e  work reported here, t he  diffusion of su l fur  i n  GaP and G a A s  

w a s  studied t o  determine the  relevant diffusion mechanisms. The impor- 

tance of uniquely defining the  experimental conditions has been stressed, 

and the necessity of elucidating diffusion mechanisms i n  compound semi- 

conductors by determining the  quant i ta t ive dependence of the diffusion 

coeff ic ient  on component pressure has been emphasized. Previous reports  

i n  the l i t e r a t u r e  concerning su l fur  diffusion i n  G a A s  have been inade- 

quate i n  both of these respects, 

been reported previously. 

The diffusion of su l fur  i n  Gap has not 

I n  Chapter 11, some relevant aspects of the  ternary phase diagrams 

of t he  Ga-P-S and Ga-As-S systems are discussed. It i s  shmn t h a t  d i f -  

fusion probably takes  place within t h e  Gap o r  GaAs  solidus regions. I n  

t h i s  investigation, diffusion w a s  studied as a function of t h e  tempera- 

ture,  t he  su l fur  pressure, and the arsenic o r  phosphorus pressure. 

In  Chapter 111, t h e  experimental procedures are described, and the  

diffusion r e su l t s  are presented. 

e f f i c i e n t  on component pressure f o r  su l fur  i n  both GaP o r  G a A s  was found 

t o  be i n  conf l ic t  with the  predictions of t h e  subla t t ice  model previously 

The dependence of t he  diffusion co- 

1 SEL - 69 - o 17 



proposed i n  the  l i t e r a tu re .  Some anomalous r e s u l t s  of so lub i l i t y  mea- 

surements are a l s o  presented i n  t h i s  chapter. 

In  Chapter IV ,  t he  e l e c t r i c a l  behavior of sulfur-diffused layers  i n  

Gap and GaAs i s  discussed. A la rge  concentration of t he  su l fur  w a s  found 

t o  be e l e c t r i c a l l y  inactive.  A comparison w i t h  t h e  electrical propert ies  

of a homogeneous sulfur-doped melt-grawn G a A s  c r y s t a l  i s  given. 

Chapter V discusses, i n  some detail, t he  subla t t ice  model and the  

in t e r s t i t i a l - subs t i t u t iona l  model, both of which have been suggested i n  

the  l i t e r a t u r e  t o  explain su l fur  diff'usion i n  GaAs.  

these models are pointed out, and other models are proposed t o  explain 

the  experimental r e s u l t s  reported here f o r  su l fur  diffusion i n  Gap and 

G a A s  . 

The inadequacies of 

Finally, i n  Chapter VI ,  a summary of t he  experimental r e su l t s  and 

conclusions i s  presented, along with some suggestions f o r  fu ture  research. 

SEL-69-017 2 



Chapter 11 

THE TERNARY PHASE DIAGRAM AND 
APPLICATIONS TO DIFFUSION 

Impurity diffusion i n  compound semiconductors such as GaAs and GaP 

displays more complex behavior than the analogous problem involving ele- 

mental semiconductors. Fortunately, experiments which take advantage of 

t he  addi t ional  degree of freedom inherent i n  a ternary system can give 

addi t ional  insight  i n t o  the  mechanism of diffusion i n  compound semicon- 

ductors. 

An understanding of t he  ternary phase diagram i s  essent ia l  i n  

s tudies  of t h i s  type. 

region i n  which experiments are being performed and tha t  a suf f ic ien t  

number of thermodynamic variables be specified t o  uniquely determine the  

experimental conditions. 

In par t icular ,  it i s  necessary t h a t  one knows t h e  

I n  t h i s  chapter, estimates of t he  ternary phase diagrams of t h e  

Ga-P-S and Ga-As-S systems are presented and t h e i r  application t o  the  

problem of su l fur  diffusion i n  GaP and G a A s  i s  discussed. It i s  shown 

t h a t  under most experimental conditions, diffusions are performed w i t h i n  

t he  solidus boundary and t h a t  three independent variables must be given 

f o r  a unique specification of the  state of t h e  system. 

i n  the  l i t e r a t u r e  concerning su l fur  diffusion i n  GaAs have frequently 

neglected t o  specify t h e  experimental conditions uniquely, and in te r -  

pretat ion of such r e su l t s  i s  d i f f i cu l t .  

Previous reports 

A. The GaaP-S System 

1. The Gap Liquidus 

Although t h e  ternary condensed phase diagrams have been studied 

f o r  t h e  Ga-As-Te [7 ]  and Ga-P-Te [8] systems, there has been no work re- 

ported on the  corresponding systems involving su l fur  i n  place of t e l l u -  

rium. A useful  first approximation t o  the Ga-P-S ternary system may be 

obtained by t h e  method discussed by Allen and Pearson 191. 
nique estimates t h e  l iquidus l i n e s  f o r  the  GaP phase f i e l d  i n  the  ternary 

system from thermodynamic data on the  binary Gap system alone [lo]. 

T h i s  tech- 

In 



t h i s  study it w i l l  be assumed t h a t  su l fur  and tellurium atoms have simi- 

lar behavior i n  the  l iqu id  a t  the temperatures of in te res t .  

experimental l iquidus curves measured f o r  t h e  Ga-P-Te system are taken 

t o  be va l id  f o r  the  corresponding system where su l fur  i s  subst i tuted f o r  

tellurium. 

However it i s  f e l t  that, i n  the  absence of experimental data on the  

Ga-P-S system, the  assumption i s  a reasonable one since t h e  qua l i ta t ive  

conclusions t o  be made a r e  not c r i t i c a l l y  dependent on t h e  exact posi- 

t i on  of the  l iquidus curves. 

Thus the  

The va l id i ty  of t h i s  assumption i s  d i f f i c u l t  t o  jus t i fy .  

The assumed Ga-P-S ternary phase diagram i s  shown i n  Fig. 1. 

Because of experimental l imitations,  t he  l iquidus curves i n  the  Ga-P-Te 

system were determined only on t h e  gallium-rich s ide of the  phase dia- 

gram. 

shown by the  dashed curves. 

Smooth extrapolations of these curves t o  t h e  GarP binary l i n e  a r e  

Also shown i n  t he  f igure a r e  the  so l id  

S 

Fig. 1. ASEXJMED TEmARY CONDENSED PHASE DIAGRAM FOR 
THE Ga-P-S SYSTEM . 
from the  Ga-P-Te system as determined by Panish [ 8 ] .  ) 

(Liquidus isotherms were taken 
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phases t h a t  e x i s t  a t  the  temperatures of i n t e re s t ,  and t h e i r  melting 

points-GaP (1465"C) ,  G a  S ( lOgO"C) ,  and Gas ( 9 6 2 ° C )  [ll]. Since a l l  

diffusions i n  the GaP systemwere performed above l lOQ°C,  sulfur-doged 

Gap i s  t h e  only s o l i d  phase t h a t  should be present  under equilibrium 

conditions. 

c l a r i t y  i n  Fig. I. 

2 3  

The Gap s o l i d  phase region i s  shown exag ed i n  s i z e  for 

Several compounds containing phosphorus and su l fu r  also e x i s t  

but t he  melting temperatures of these compounds are below b O ° C  and these 

species are not of i n t e r e s t  i n  the present work 1121. 

2. Vapor Pressures Along the  GaP Liquidus 

Before one can determine t h e  region i n  which diffusions are 

performed, it i s  necessary t o  know t h e  vapor pressures t h a t  e x i s t  along 

the  Gap liquidus.  These pressures a r e  not avai lable  i n  t he  l i t e r a t u r e ,  

but they may be estimated by using the  following set of equations, 

Pp2 = (7pxp)2 PO t 
p2 

and Xi are the  vapor pressure, a c t i v i t y  coeff ic ient ,  7i.' where Pi, 

and mole f rac t ion  i n  the  l i qu id  of species i, and PT i s  the  vapor 

pressure over pure l i qu id  3.. 

n i t ion  of a c t i v i t y  coef f ic ien t  [13]. 

of other  vapor specieg are low and are ignored here. 

These equations are derived from t h e  def i -  

The vapor pressures of gallium and 

The pressures of phosphorus and su l fu r  over t h e  pure l iqu ids  

were obtained from the  JANAF t ab le s  [14]. 
ealeulated by using the  regular  solut ion method of Fumkawa and Thurmond 

El51 t o  f i t  t h e  assumed l iquidus curves i n  Fig. I. 

The a c t i v i t y  coef f ic ien ts  were 

5 SEL-69-017 



The calculated pressures of the important vapor species over 

the  12OO0C i iquidus are shown i n  Fig. 2. 

calculated pressures are subject t o  large e r ro r s  because an approximate 

theory w a s  used t o  obtain 7 and X, both of which are raised t o  the  

second o r  fourth power. However, an order-of-magnitude estimate i s  s t i l l  

useful i n  predicting experimental operating conditions. 

It is  understood t h a t  t he  

IO2 

I O '  

Y) e 
r" I -  
4 
0 

0 
E 
c - 
lL& 10'- 
3 
v) 
v) 
W a 

I d 2 -  

0 0.2 0.4 0.6 0.8 
16' 

XGa IN LIQUID PHASE 

- 

- 

- 

a. Pressures of P and P4 2 

, 
0.2 0.4 0.6 0.8 

XGa IN LIQUID PHASE 

b. Pressure of S2 

0 

Fig. 2. VARIATION OF VAPOR PRESSURES A!T 1200°C ALONG TKE LIQUIDUS 
I N  THE Ga-P-S SYSTEM AS CALCULATED BY THE REGULAR SOLUTION METTHOD. 

3. The Gap Solidus Region 

A t  a given temperature, t he  region of s t a b i l i t y  of sulfur- 

doped GaP can be specified by giving a description of t h e  solidus bound- 

a ry  i n  terms of the mole fract ions of the individual components i n  t he  
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so l id  phase as s h m  i n  Fig. 1. 

ometry are small and so l id  s o l u b i l i t i e s  are limited, t h i s  description 

i s  l imited value. 

However, when deviations from stoichi-  

A more meaningful picture  of t he  solidus region may be given 

i n  terms of the  ghosphorus (Pp,) and su l fur  (Ps2) pressures. An 

i l l u s t r a t i o n  f o r  t he  Gap solidus region a t  1200°C i s  shown i n  Fig. 3. 

1 

S 

PRESSURE OF P2 (atmospheres) 

a. Ternary condensed phase b. Schematic diagram of the  re- 
diagram with a t i e  l i n e  gion of existence of so l id  
r e l a t ing  a point on t h e  GaP i n  terms o f  t he  vapor 
solidus boundary and i t s  pressures and Pp . 
equilibrium l iqu id  Points I aZ2 6 are no$ 

shown because they represent 
points  on the  Ga-P binary 
l i n e  fo r  which Ps2 i s  zero 

Fig. 3. MAPPING OF THE Gap SOLIDUS BOUNDARY AT 1200°C FROM THE TER- 
NARY CONDENSED PHASE DIAGRAM OF TH!& Ga-P-S SYSTEM. 

Each point on t h e  solidus boundary i n  the  ternary condensed phase dia- 

gram shown i n  Fig. 3a can be related t o  a point on the  l iquidus curve 

by a t i e  l ine.  Each point on the  boundary then corresponds t o  a spe- 

c i f i c  set of su l fur  and phosphorus pressures. Thus point 2 i n  Fig. 3a 

corresponds t o  point 2 i n  Fig. 3b. Using the  vapor pressures t h a t  w e r e  

calculated i n  the  previous section, t h e  solidus boundary for the  Gap 
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phase a t  1200uC i s  mapped out as shown i n  Fig. 3b. 
boundary represent values of phosphorus and su l fur  pressures f o r  which 

the  GaP phase i s  stable,  i.e., a vapor phase and a sulfur-doped GaP so l id  

phase exist, but no l iqu id  phase i s  present. 

Points within t h e  

The upper and lower bounds on phosphorus pressure correspond 

t o  the  l imi t s  of s t a b i l i t y  of t h e  so l id  phase i n  the binary Ga-P system. 

The high upper l imi t  on su l fur  pressure i s  a consequence of the  very 

high vapor pressure of su l fur  over pure l i qu id  su l fur  a t  t h i s  temperature. 

B. The Ga-As-S System 

1. The GaAs Liauidus 

The phase diagram f o r  the  Ga-As-S system has not been deter-  

mined, so techniques s imilar  t o  those discussed above f o r  the Ga-P-S 

system were used t o  estimate the  l iquidus curves, vapor pressures, and 

the  solidus boundary of t he  G a A s  phase. Figure 4 shaws the  assumed ter- 
nary condensed phase diagram f o r  t he  Ga-As-S system. Liquidus l i nes  f o r  

t h e  GaAs so l id  phase f o r  several  temperatures were taken from the  Ga-As- 

Te system as determined by Panish [8f. 
the  temperatures of i n t e r e s t  are a l s o  shown on t h i s  diagram. 
study, several  diffusions were done a t  temperatures lower than lOgO"C, 

t he  melting point of the G a  S phase, so the  existence of t h i s  and 

other compounds i s  possible under equilibrium conditions. 

The so l id  phases t h a t  exist a t  

I n  t h i s  

2 3  

Several compounds containing arsenic and su l fur  a l s o  exist 
However, they a l l  have melting points below 400°C and are not of [12]. 

i n t e r e s t  i n  t h i s  study. 

2. Vapor Pressures Along the  GaAs Liquids 

The vapor pressures along the  l iquidus of the  GaAs phase region 

are estimated using the  following s e t  of equations: 

SEL-69-017 8 



S 

Go Go As As 

Fig. 4. ASSUMED TERNARY CONDENSED PHASE DIAGRAM FOR THE 
Ga-As-S SYSTEM. 
Ga-As-Te system a s  determined by Panish [7]. ) 

(Liquidus isotherms were taken from the  

and 
2 

The vapor pressures of gallium and other  vapor species are low 
and neglected here. 

were taken from Thurmond's paper [lo], and t h e  a c t i v i t y  coef f ic ien ts  

were obtained by f i t t i n g  the  l iquiaus curves of Fig. 4 w i t h  t he  regular  

solut ion method of Furukawa and Thurmond [l?]. The calculated pressures 

of the  important vapor species along t h e  1 1 0 0 ° C  isotherm are shown i n  

Fig. 5. 

The pressures of arsenic  over pure l i qu id  a rsen ic  

3. The GaAs Solidus Region 

The vapor pressures calculated i n  t h e  previous section can be 

used t o  map the  boundary of t he  G a A s  sol idus region a t  l l O O ° C  as discussed 
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Fig. 3. VARIATION OF VUOR PRESSURES AT l l O O ° C  ALONG THE LIQUIDUS IN 
THE Ga-As-S SYSTEM AS CALCULATED BY THE REGULAR SOLUTION MECHOD. 

previously f o r  the  GaP system. 

tween points on t h e  l iquidus i n  Fig. 6a and points on the  solidus bound- 

ary i n  Fig. 6b i s  shown. 

Again the  one-to-one correspondence be- 

C. Application t o  This Study 

In  Chapter 111, t h e  experimental procedures and r e su l t s  are dis-  

cussed. 

diffusion can be determined from the  amounts of phosphorus (or a rsen ic)  

and su l fur  added t o  the  ampoule together with the  re la t ions  shown i n  

Fig. 9 (or 10) and 11 respectively. 

phosphorus (or a rsen ic)  and su l fur  pressures are p lo t ted  on Fig. 3b (or 
Fig. 6b), it can be seen t h a t  diffusions usually take place within the  

GaP (or  G a A s )  solidus boundary. 

The phosphorus (or a rsen ic)  and su l fur  pressures present during 

If  the  experimental conditions of 

When no excess phosphorus (or a rsen ic)  

SEL-69-017 10 



a. Ternary condensed phase dia- 
gram with a t i e  l i n e  re la t ing  
a point on the  solidus bound- 
a r y  and i t s  equilibrium 
l iqu id  

- I O 2 -  
8 
B 

I IOOOC 

4 5  

PRESSURE OF As, (atmospheres) 

b. Schematic diagram of the  re- 
gion of existence of so l id  
G a A s  i n  terms of t he  vapor 
pressures Ps2 and PAS&,. 
Points 1 and 6 are not shown 
because they represent points 
on the  Ga-P binary l i n e  f o r  
which Ps2 i s  zero 

Fig. 6. MAPPING OF THE G a A s  SOLIDUS BOUNDARY AT l l O O ° C  FROM THE TER- 
NARY CONDENSED PEASE DIAGRAM OF TKE GEL-AS-~ SYSTEM. 

i s  added, the  diffusion probably occurs a t  a point on the  solidus bound- 

ary with the  so l id  phase i n  equilibrium with a small amount of gallium- 

r i ch  l i qu id  @]. The portion of t he  Gap solidus region t h a t  can be gx- 

plored, however, i s  qui te  l imited since e i t h e r  t he  phosphorus o r  sulfur 
pressure i s  excessive, except f o r  a small region of the  gallium-rich 

portion of t he  solidus. 

d i f f e r s  from t h a t  of Zn i n  GaAs. 

sures of Zn and A s  over t he  pure l iqu ids  permit diffusion s tudies  over a 

more extensive range of the  solidus region. 

In  t h i s  respect, t he  diffusion of sulfur i n  Gap 

I n  the  lat ter system, the  lower pres- 

Within the  solidus region, only two phases are present--a sulfur-  

doped Gap (or GaAs)  so l id  phase, and a vapor phase composed of various 

species of Ga,  P (or  A s ) ,  and S. The phase rule [I61 gives t h e  number 
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of independent parameters required t o  specify the  state of a system 

unambiguously as 

F = C + 2 - P  . (2 .7 )  

Here F i s  the  number of degrees of freedom, C i s  t h e  number of com- 

ponents, and P i s  the  number of phases. I n  a ternary system there  a r e  

three degrees of freedom within the  solidus region. 

f u l  t o  ask, f o r  example, f o r  the so lub i l i t y  of sulfur i n  Gap at, say, 

1200°C. 

on two other independent variables as w e l l ,  a l l  three parameters must be 

specified before a unique answer t o  the  question can be given. 

It i s  not meaning- 

Since the so lub i l i t y  depends not only on the  temperature, but 

I n  t h i s  study, the  three independent variables were taken t o  be the  

temperature, the su l fur  pressure, and the  ph06phOruS or  arsenic  pressure. 

By studying the  diffusion and so lubi l i ty  of sulf'ur i n  GaP and GaAs when 

these parameters were varied, it w a s  hoped t h a t  insight  i n t o  the  mechan- 

isms of diff'usion and defect s t ructure  of t he  c rys t a l  could be obtained. 

SEL-69-017 12 



Chapter I11 

DIFFUSION OF SULFUR I N  GaP AND GaAs 

Diffusion and s o l u b i l i t y  s tudies  of impurit ies i n  semiconductors 

can give valuable in fo rmt ion  about the  mechanisms of impurity movement 

and incorporation. 

obtain diffusion p ro f i l e s  of su l fu r  i n  Gap and GaAs. This technique w a s  

used because it gives information about t he  t o t a l  impurity concentration 

i n  t he  diffused layers  and i s  not influenced by incomplete ionizat ion o r  

by compensation by other  impurities. I n  addition, radiotyacer p ro f i l e s  

give a d i r e c t  measure of t he  surface concentration under experimental 

conditions and make any concentration dependence of t h e  diffusion co- 

e f f i c i e n t  easy t o  detect .  

a c t i v i t y  GZ 0.4 mc/mg) which i s  a weak beta emitter (0.167 MeV) and has a 

h a l f - l i f e  of 87 days [12]. 

I n  t h i s  study, a rad io t racer  technique w a s  used t o  

The radioisotope used w a s  sulfur-35* (spec i f ic  

I n  t h i s  chapter, the  experimental procedures are described, and t h e  

experimental r e s u l t s  a r e  presented. Within t he  sol idus region of t he  

te rnary  systems of i n t e re s t ,  the  three var iables  needed t o  specify 

uniquely the  s t a t e  of the  system are taken t o  be t h e  temperature, t he  

phosphorus (Pp,) or arsenic   PA^^) pressure, and the  sulfur pressure 

(Ps2). The r e s u l t s  of experiments i n  which each of the  three  parameters 

i s  var ied independently a r e  discussed. It i s  shuwn t h a t  the  behavior of 

sulfur diffusion i n  Gap and G a A s  when the  component pressure i s  varied 

i s  not i n  agreement with a model of' vacancy d i f fus ion  on the  anion sub- 

l a t t i c e  which has been proposed i n  t he  l i t e r a t u r e  [l]. 
of surface concentration on su l fu r  pressure i s  a l s o  anomalous. 

The dependence 

Additional information about the  diffusion mechanism can be obtained 

by varying the  Fermi l e v e l  by means of a change i n  the  background doping. 

The r e s u l t s  of d i f fus ing  su l fu r  i n  heavily-doped n-type GaAs a r e  pre- 

sented and compared t o  diffusion i n  t he  undoped crys ta l s .  

* 
Volk Radiochemical Company, Burbank, California.  
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A. Experimental Procedures 

1. Properties of S ta r t ing  Materials and Sample Preparation 

Gap s ingle  c rys t a l s  were grown by an open tube vapor ep i t ax ia l  

process using PC1 as the  t ransport  agent rI-71. The Gap c rys t a l s  were 

grown on (1111 G a  faces of GaAs seed crystals .  Typical parameters of 
these undoped c rys t a l s  w e r e :  electron concentration, 1015-10 cm ; 

3 

16 -3 

mobility, 80 t o  100 cm 2 /v-sec; and dis locat ion density, 10 6 cm -2 . These 

c rys t a l s  have a high density of planar la t t ice  defects ( these are be- 

l ieved t o  be stacking f a u l t s  or microtwins [is]) and contain up t o  6 per- 

cent of arsenic  on t h e  anion s i te  from contamination from the  GaAs 

seed [lg]. 
t h e  same c rys t a l  when a d i r ec t  comparison among several  diffusions was 

ne c es sary . 
The e f f ec t  of t h i s  arsenic  content w a s  minimized by using 

* 
GaAs s ingle  c rys ta l s  were obtained from the  Monsanto Company. 

Undoped c rys t a l s  w e r e  used i n  most of t h e  work, The undoped samples w e r e  

boat-grown and oriented i n  t h e  <lU> direction. Typical parameters of 

these c rys t a l s  were: electron concentration, 1015-1016 cmm3; mobility, 

4000 cm2/v-sec; dis locat ion density, 1-2 x 10 3 cm -2 . Heavily-doped G a A s  

w a s  a l s o  used f o r  t he  experiments described i n  section C . 4  of t h i s  chap- 

ter. 

The carrier concentration w a s  5 x 10 cm , mobility w a s  1910 ern2/ 

v-sec and the  dislocation density w a s  6.5 x 10 cm . 
The n-type samples were Czochralski-grown and doped w i t h  tellurium. 

18 -3 
3 -2 

The c rys t a l s  were lapped with 3200 g r i t  abrasive, mechanically 

polished i n  Linde A 0.3 micron alumina powder, and cleaned i n  an u l t r a -  

sonic vibrator.  

acetone, methanol), t he  samples were etched f o r  10 minutes t o  remove 

damage due t o  the  polishing procedure. 

8 g. K Fe(CN)6 : 12  g. KOH : 100 g. H20 [20], and f o r  t h e  GaAs, an 0.15 

percent Br-methanol solution. After etching, the  {ill] P and c1111 
A s  

p i t ted .  

A f t e r  the  usual degreasing procedure (trichloroethylene, 

The etchant f o r  t h e  GaP w a s  

3 

faces w e r e  smooth and shiny, while t h e  {111] G a  face w a s  d u l l  and 

* 
Monsanto Company, St.  Louis, Missouri. 
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2. Encapsulation and Annealing 

Standard solutions of the impurity diffusant  were prepared by 

dissolving known amounts of t he  radioactive sulfur-35* i n  Spectroquality 

benzene. Controlled amounts of su l fur  were then introduced i n t o  cleaned 

quartz ampoules by pipet t ing appropriate volumes of l iquid.  The benzene 

w a s  evaporated by passing a stream of dry nitrogen (high pur i ty)  over 

the  l i qu id  while t he  benzene vapor w a s  heated w i t h  an inf ra red  lamp. 

Appropriate quant i t ies  of phosphorust o r  arsenic* were placed 

One of t he  d i f f i -  i n  t he  ampoule along with the  sample t o  be diffused. 

c u l t i e s  of high temperature diffusions i n  G a A s  and GaP with su l fur  as 

the  diffusant  has been the  presence of a vapor t ransport  mechanism which 

can r e su l t  i n  severe surface deterioration, large weight losses,  and con- 

sequently, unrel iable  data [21]. The use of a quartz place "sandwich,ft 

with the  sample contained between two quartz plates ,  has been suggested 

as a technique f o r  reducing the  surface deter iorat ion [22-241. 

t h i s  technique, good surfaces were obtained i n  our experiments. 

ca lwe igh t  loss i n  the  GaP diffusions corresponded t o  a loss of one 

micron from each face,  

w a s  only 0.25 microns from each face. 

Using 

A typ i -  

I n  t h e  GaAs diffusions, the corresponding loss 

The ampoule was evacuated t o  1-5 x t o r r  and then sealed 

off. 

vent vaporizing of t he  sulfur  and phosphorus o r  arsenic  during sealing, 

A sketch of the  diffusion ampoule appears i n  Fig. 7. An inner plug w a s  

used t o  reduce the  volume of t he  ampoule t o  1.0 m l  (f LO percent). 

Wet asbestos tape w a s  wrapped around the  end of the  ampoule t o  pre- 

The ampoule w a s  placed i n  a furnace f o r  annealing a t  elevated 

temperatures. 

for  the  Gap diffusions,  and from 900 t o  12OO0C f o r  t he  corresponding 

GaAs work. The diffusion t i m e  varied from 20 minutes t o  5 days depend- 

ing on the  temperature and the  purpose of t he  par t icu lar  experiment. 

The diffusion temperature range w a s  from 1100 t o  l3OO"C 

The 

* 
Radiopurity 99 percent. 

Continental O i l  Company. 
?High purity,  American Agricultural  Chemical Company, Division of 

*6 9 ' s  purity,  United Mineral and Chemical Corp., New York. 
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OR Gap) 

~ N N E R  PLUG -ARSENIC OR PHOSPHORUS 

Fig. 7. SCHEMATIC DRAWING OF A DIFFUSION AMPOULE AND ITS CONTENTS. 

temperature w a s  controlled t o  S ° C  during the  diffusion. 

sion, the  ampoule w a s  water quenched and the samples were removed. 

A f t e r  d i f fu-  

3. Construction of Diffusion Prof i les  

The samples w e r e  soaked f o r  30 minutes i n  a w a r m  benzene solu- 

t i on  t o  remove any su l fur  t h a t  might have condensed on the surface. 

were then checked for weight loss, 

Circular d i scs  0.150 in. i n  diameter were cut out w i t h  an ul t rasonic  t o o l  

t o  eliminate edge diffusion e f f ec t s  and t o  give a standard geometrical 

shape . 

They 

T h i s  was negligible i n  most cases. 

Because t h e  diffused layers  were generally less than 10 microns 

deep, reproducible p ro f i l e s  could not be obtained using a precision lap- 

ping machine. 

layers  p a r a l l e l  t o  t he  surface. 

wax onto a microscope s l ide.  

appropriate etchant (given i n  section A . l  of t h i s  chapter) and s t i r r e d  

vigorously f o r  the desired t i m e  [ 2 5 ] .  Typically layers  0.5 t o  1.0 m i -  

crons th ick  were removed i n  1-2 minutes. 

greased after each etch. The etchants were changed per iodical ly  t o  

prevent contamination of subsequent layers. 

Instead, an etching technique w a s  used t o  remove t h i n  

The sample w a s  mounted w i t h  Apiezon W 

It was then immersed i n t o  a beaker of t h e  

The samples were r insed and de- 

The thickness of each removed layer  w a s  calculated by weighing 

the  sample w i t h  a Mettler Micro G r a m - a t i c  balance before and after each 

etching. Counting w a s  doQe w i t h  a Baird Atomic proportional counter and 

sca le r  t i m e r .  

d i r ec t ly  because the  0.167 MeV beta emission w a s  strongly absorbed by 

The a c t i v i t y  of each removed layer  could not be counted 
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t he  etching solutions. 

could be determined by counting t h e  sample before and after each etch. 

However, t h e  a c t i v i t y  of su l fur  i n  each l a y e r - ,  

The r e s u l t s  were corrected f o r  self-absorption since attenuation of t h e  

beta emission i n  the  GaP or  GaAs c rys t a l s  w a s  s ignif icant .  

The correction w a s  made by assuming t h a t  the  absorption of t he  

beta emission i n  t h e  c rys ta l s  could be characterized by an exponential 

curve of t h e  form, 

Relative in t ens i ty  a exp(- pmd) , (3.1) 

2 where pm i s  the  mass absorption coeff ic ient  i n  c m  /mg, and d 
absorber thickness i n  mg/cm 126,271. The measured absorption curves of 

the  0.167 MeV beta pa r t i c l e s  f o r  several materials are shuwn i n  Fig. 8. 

i s  t h e  
2 

ABSORB E R 

ALUMINUM FOIL 
PAPER 

SARAN WRAP 

I I I I 1 I I I I I I I I 
4 8 12 16 20 24 28 

ABSORBER THICKNESS (mg /cm2) 

Fig. 8. ME2lSUFED ABSORPTION CURVES OF 0.167 MeV BETA PARTICLES 
I N  VARIOUS IvIATERIALS. 
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In  t h i s  study, it w a s  assumed t h a t  absorption i n  G a A s  and GaP w a s  simi- 

l a r  t o  that i n  aluminum where 

i s  reduced t o  l/e of i t s  i n i t i a l  value i n  9 microns of Gap and 7 microns 

of GaAs.  

depth of t h e  p ro f i l e  increases. 

2 i s  0.27 cm /mg.  The beta in t ens i ty  pm 

The correction t e r m  becomes increasingly important as the  

Sulfur concentrations i n  the  diffused layers  were determined 

by comparing the  a c t i v i t i e s  of t he  removed layers  with t h a t  of a ca l i -  

brated sulfur-35 standard made from t h e  standard solutions discussed 

previously. 

Diffusion prof i les  were usually determined only on the  {lll] 

P o r  {lll} A s  faces because the  etchants used produced polished sur- 

faces only on these faces. In  most cases, however, when good surfaces 

were retained, surface counts of t he  {lll} A and {111} B faces w e r e  

within 25 percent of each other, indicating t h a t  t h e  diffusion w a s  prob- 

ably the  same on both faces. 

ence of excess phosphorus (2  mg/ml), however, showed a marked difference 

between the  two faces. The {US} P face remained smooth and shiny, 

while t he  {lll} G a  face apparently was chemically attacked and had a 

much higher surface concentration and penetration than the  other face. 

It i s  in te res t ing  t o  note t h a t  t he  diffusion temperature i n  t h i s  case 

w a s  lower than the  melting temperature of the  phase (lOgO°C). 

In  t h e  G a A s  system, no such e f f ec t  w a s  noted f o r  temperatures as low as 

900°C. A s igni f icant  difference, however, may have been the  lower sul-  

f u r  vapor density for the  GaAs case (0.2 pg/ml versus 20 pg f o r  t he  Gap 

diffusion).  

serious problem a t  high su l fur  concentrations i n  the  GaAs-S system [l]. 

Diffusions a t  102OOC i n  GaP i n  the  pres- 

G a  S 2 3  

Goldstein reported t h a t  compound formation w a s  a more 

4. Vapor Pressures During t h e  Diffusion 

I n  the  in te rpre ta t ion  of the  experimental resul ts ,  it i s  nec- 

essary t o  know the  pressures of t h e  various species i n  the  vapor phase. 

The relat ionship between pressure and vapor density i s  shown i n  Figs. 9, 
10, and 11 f o r  P, As, and S respectively. The calculations w e r e  

done using equilibrium constants from the  l i t e r a t u r e  [14,28] and a "con- 

servation-of -moles" equation f o r  each component. The su l fur  dimer ( S2) 

dominates under a l l  experimental conditions. For arsenic, t he  tetramer 
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Fig. 9. PARTIAL PRESSURES OF P2 AND P4 VERSUS THE VAPOR 
DENSITY OF PHOSPHORUS I N  THE AMPOULE. 

(As4) 
t he  dimer (P,) dominates except a t  t he  higher pressures. The pres- 

sures of 
g ib le  under the  experimental conditions i n  t h i s  study. These calcula- 

t i ons  should be va l id  when the pressures are less than the  pressures 

dominates except a t  the  lowest pressures, while for  phosphorus, 

S8 and the  monomers of a l l  species can be shown t o  be negli-  

over t he  pure l iqu ids  and, for P and As,  when they are grea te r  than 

the pressures a t  the  Ga-rich part of the  GaP or GaAs solidus boundary 
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Fig* 10. PARTIAL PRESSURES OF As2 AND A s 4  VJ?,RSITS TEE 
VAPOR DEXSITY OF ARSEXCC I N  THE AMPOUm 

[lo]. 
between the species i n  the  vapor phase. 

It i s  a l s o  s t ressed  t h a t  the  calculat ions assume no in te rac t ions  

The a rsen ic  (or phosphorus) pressure when no excess a rsen ic  

( o r  phosphorus) w a s  added w a s  assumed t o  be the  decomposition pressure 

f o r  t he  GaAs (or  GaP) so l id  phase i n  the  binary Ga-As  (or Ga-P) system 

[lo,  331 

5. Determination of Diffusion Coefficient 

I n  the  experiments described i n  t h e  next section, su l fu r  w a s  

diffused i n t o  the  samples from a vapor source. 

diffusions,  t he  amount of sulfur that  diffused i n t o  t h e  sample w a s  small 

i n  r e l a t ion  t o  t h e  amount of su l fur  i n i t i a l l y  i n  t h e  ampoule. Thus t h e  

assumption of an i n f i n i t e  source w a s  valid. When t h e  diffusion coef f i -  

c ient ,  D, i s  a constant, and the re  are no rate l imi ta t ions  a t  t he  

For nearly a l l  of t he  
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I I 

Fig. 11. PRFSSURFI OF S2 VERSUS THE VAPOR DENSITY OF 
SULFUR IN THE AMPOULF:. 

vapor-solid interface,  the diffusion prof i les  are complementary e r ro r  

functions [29] which s a t i s f y  the  relat ion:  

where C(x) i s  the  impurity concentration a t  a given distance, x, be- 

l o w  the  surface, Cs i s  the  surface concentration, and t i s  the  d i f -  

fusion t i m e .  A s  w i l l  be shown, the  diffusion p ro f i l e s  a t  l o w  su l fur  
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concentration appear t o  obey Eq. (3.2). The diffusion coeff ic ient  w a s  
obtained by H a l l ' s  method [3O] i n  which normalized prof i les ,  

versus (x/ Jt), plot ted  on probabi l i ty  paper y ie ld  s t ra ight  l i n e s  

whose slopes are re la ted  t o  the  diffusion coeff ic ient .  

(C/2Cs) 

B. Experimental Results i n  GaP 

I n  t h i s  section the  experimental results f o r  t h e  diffusion of sul-  

fur i n  GaP are presented. A s  discussed previously, diffusion within 

t h e  GaP solidus region can 

su l fur  pressure, t he  phosphorus pressure, and t h e  temperature. The re- 

s u l t s  obtained by varying each of these parameters, while t h e  other two 

are kept constant, are discussed i n  the  following section. Models t h a t  

explain the  observed r e s u l t s  are discussed i n  Chapter V. 

be assumed t o  depend on three  variables--the 

1. Variation with Sulfur Pressure 

Figure 12 i l l u s t r a t e s  t he  e f f ec t  of -varying the  su l fur  vapor 

density i n  the  ampoule, 

temperature fixed a t  1215OC, and the  phosphorus vapor density, 

a t  2-3 mg/ml (Pp2 x 1 a t m ) .  

p ro f i l e s  are smooth curves which obey t h e  complementary e r ro r  function 

solutions of the  diffusion equation reasonably w e l l .  

p ro f i l e s  do not indicate  any marked dependence of t he  diffusion coeff i -  

c ien t  on su l fur  concentration. This r e s u l t  i s  i n  contrast  t o  t he  strong 

concentration dependence reported fo r  Zn i n  GaP [211. However, when the  

surface concentration exceeds 10 

This indicates  a change i n  the  diffusion behavior at  high concentrations. 

Similar p ro f i l e s  have been reported f o r  selenium diffusion i n  GaAs  when 

the  surface concentration exceeded 1021 

[Sv], from 0.2 t o  20 p,g/ml, while keeping the  

[P,], 
A t  the  lower surface concentrations the  

Therefore these 

20 - cm 3, t he  shape of t h e  p r o f i l e  changes. 

[ 221. 

A s  t he  su l fur  vapor density increases, t h e  surface conentration 

increases as shown i n  Fig. 13. The r e l a t ion  appears t o  be 

I (3.3) 1.3 surface concentration a: [S ] 
V 
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T = 1215 OC 
t = 12 hrs 

[pV]= 2 - ~ m g / m 1  
Isy] = o 20pg/m I 

X 6pg/mI 
0 2 p g I m l  
+ 0.6pg /m I 
o0 .2pg /ml  

DISTANCE BELOW SURFACE, x (microns)  

Fig. 12. DIFFUSION PROFILES OF SULFUR I N  Gap AT VARIOUS 
SULFUR PRESSURESr 

where [Sv] i s  t h e  sulf'ur vapor density. This r e l a t ion  i s  not i n  

agreement with t h e  usual model of incorporation of su l fur  atoms on 

i so l a t ed  phosphorus sites. This point i s  discussed more f u l l y  i n  

Chapter V. 

2. Variation with Phosphorus Pressure 

Since t h e  concentration of phosphorus and gallium vacancies 

depends on t h e  phosphorus pressure i n  equilibrium with t h e  GaP crystal ,  
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Fig. 13. DEPENDEXCE OF THE SURF'ACE CONCENTRATION OF 
DIFFUSION PROFILZS I N  GaP ON THE SULF'UR VAPOR DEN- 
SmY. T = 1215OC; [P,] = 2-3 t?g/d. 

.- __ 

valuable information about the diffusion process may be obtained by study- 

ing the  dependence of diffusion on phosphorus pressure. 

the  r e s u l t s  of such an experiment where the  excess phosphorus added t o  

t h e  ampoule w a s  varied from 0 t o  3.2 mg/tnl. 

a l l  three p ro f i l e s  w a s  6 p,g/ml, and the  temperature w a s  1217°C. 

diffusion coeff ic ient  and the  surface concentration appear t o  be r e l a t ive ly  

independent of the  phosphorus pressure. 

Figure 14 shows 

The sulfur  vapor density f o r  

Both the  

Figure 15 demonstrates e x p l i c i t l y  t h e  dependence of diffbsion co- 
e f f ic ien t  on phosphorus pressure for t h e  p ro f i l e s  Shawn i n  Fig. 14, as 

w e l l  as addi t ional  data f o r  a temperature of 1112OC and a sulfur vapor 

density of 2 p,g/ml, The phosphorus pressure when no excess phosphorus 

w a s  added w a s  taken t o  be the  pressure a t  t h e  gallium-rich solidus 

SEL-69-01? 24 



I xL< 

t I 

t = 6hrs 
T = 1217OC 

[S,] = 6pg / ml 

[P,] = 0 NONE 
0 200pg/ml 
x 3.2 mglml 

- .  

\ X 0 

I I I I I I 
lo d 2 4 6 8 

DISTANCE BELOW SURFACE , x ( microns) 

Fig. 14. DIFmTSION PROFILES OF SULFUR I N  GaP AIC VARIOUS 
PHOSPHORUS PRESSURES. 

boundary as determined by Thurmond 101, The phosphorus pressure when 

excess phosphorus w a s  added w a s  determined from Fig. 9. 
dependence of diffusion coefficient on phosphorus pressure i s  not i n  

agreement w i t h  a model of vacancy diffusion within the  phosphorus sub- 

lat t ice.  

The observed 

T h i s  i s  discussed more f u l l y  i n  Chapter V. 

3. Variation with Temperature 

Figure 16 i l l u s t r a t e s  the  effect of varying the  temperature 

from 1112OC t o  1311°C whi l e  keeping t h e  su l fur  and phosphorus pressures 
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J I I I I I I I I 1 I I 

Fig. 13. DEPENDENCE OF Tm DIFFUSION COEFFICIEDT OF SULFUR I N  
GaP ON THE PHOSPHORUS PRESSURE. 
Isv] = 2 pg/ml a t  1 1 1 2 0 ~ .  

ISv] = 6 p g / d  a t  1217OC; 

approximately constant. 

i n  a l l  diffusions.  However, the  preceding sections have demonstrated 

t h a t  t he  diffusion coeff ic ient  i s  not strongly dependent on e i t h e r  t he  

phosphorus pressure o r  the  sulfur concentration (at  least a t  concentra- 

t i ons  below lo2' ~ m - ~ ) .  

two higher temperatures, and 2 pg/ml a t  1112OC. 

p ro f i l e s  on the  same graph, they have been scaled t o  a normalized t i m e  

of 12 hours by assuming t h a t  they scale  as the  square root of t i m e .  

Measurements a t  1217OC indicate  t h a t  t h i s  i s  a reasonable assumption. 

These r e su l t s  are shown i n  Chapter V. The ac tua l  diffusion times were 

3 hours a t  1311°C, 12 hours a t  X ? l 5 O C ,  and 48 hours a t  1112OC. 

Actually t h e  vapor dens i t ies  were not t h e  same 

The su l fur  vapor densi ty  w a s  6 pg/ml a t  the  

I n  order t o  p lo t  the  
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DISTANCE BELOW SURFACE, x (microns) 

Fig. 16. DIFFUSION PROFILES OF SULFUR I N  GaP AT VARIOUS 
TEMPERATURES. 
12 h r  a t  l2l5OC, and 48 h r  a t  1112OC. 

Actzal diffusion times are 3 h r  at 1311°C, 

The diffusion coeff ic ients  determined from these p ro f i l e s  are 

A s t r a igh t  p lo t ted  i n  Fig. 17 as a function of reciprocal  temperature. 

l i n e  through t h e  points  yields 

3 2  where t h e  pre-exponential D was 3.2 x 10 cm /see, and t h e  act ivat ion 

energy Q w a s  4.7 eV. Because extensive measurements have been made 
0 
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TEMPERATURE, T (OC) 

I300 I200 I100 io-", I t I 

[sJ = 2-6 pg/ml 
[P,] = 0.8 - 2.7 mg 

.6 

Fig. 17. DEPENDEXCE OF THE DIFFUSION COEFFICIENT OF SULmTR 
I N  GaP ON TEMPEFUPURE. 

only a t  l2l5*C, the  values fo r  Do and Q quoted above may be somewhat 

i n  error.  

t e r  V, emphasis i s  placed on the  r e s u l t s  of experiments i n  which the  

phosphorus o r  su l fur  pressures have been varied. The temperature var i -  

a t ion  i s  s ign i f icant  only i n  indicat ing whether or  not an i n t e r s t i t i a l l y -  

controlled diffusion process i s  feasible ,  and even f a i r l y  large (* 1.0 e V )  

e r rors  i n  Q w i l l  not change the  conclusions t h a t  are made. 

However, i n  t he  discussion of t he  diffusion mechanism i n  Chap- 

C. Experimental Results i n  GaAs 

The diffusion of su l fur  i n  GaAs has been studied by a number of 

experimenters [2]. However, previous reports  i n  t h e  l i t e r a tu re ,  i n  anal- 

ogy with work i n  G e  and Si, w e r e  usually simply measurements of t he  
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- 
di f fus ion  coef f ic ien t  as a function of temperature. 

no work reported on t h e  var ia t ion  of diffusion and s 
as a function of t h e  su l fu r  vapor densi ty  during d i f  

of t h e  a rsen ic  pressure has, w i t h  few exceptions [3, 

There appears t o  be 

n, and the  ro l e  . 
I n  t h i s  section, a systematic study of t he  e f f e c t s  of varying in-  

dependently t h e  su l fu r  pressure, t he  arsenic  pressure, and t h e  tempera- 

t u r e  are reported. 

work on the  e f f e c t  of arsenic  pressure on diffusion [4] t o  cover a much 

wider range of a rsen ic  pressures, and d i f f e r s  quant i ta t ively,  although 

not qua l i ta t ive ly ,  from h i s  r e su l t s .  

s u l t s  of d i f fus ing  su l fu r  i n t o  very heavily-doped n-type GaAs.  

t o  explain the  observed r e s u l t s  are discussed i n  Chapter V. 

The measurements reported here have extended Vieland's 

Th i s  sect ion a l s o  includes the  re-  

Models 

I. Variation w i t h  Sulfur Pressure 

Figure 18 shows a number of p ro f i l e s  f o r  which t h e  su l fu r  vapor 

densi ty  w 2 s  varied from 0.2 t o  6.0 pg/ml, while t h e  temperature and arse- 

n i c  vapor densi ty  w e r e  kept constant a t  1130°C and 4-6 mg/ml. 

2 atm) respectively.  

ported above f o r  su l fu r  i n  Gap. 

p r o f i l e s  seems t o  indica%e a sulfur-r ich layer  a t  the  surface which w a s  

not seen i n  the  GaP r e s u l t s  a t  a higher temperature. 

simply t o  surface contamination t h a t  w a s  not removed during the  benzene 

r inse,  but more fundamental phenomena might be responsible. Similar 

observations of impurity-rich surface layers  were made when Sb w a s  d i f -  

fused i n t o  Ge. 

sa tura ted  bonds of surface G e  atoms [32]. 

i s  operative i n  t h e  GaAs-S system could only be determined by more 

extensive work. 

 PA^^ x 

The nature of the  p ro f i l e s  i s  s imilar  t o  t h a t  re- 

The i n i t i a l  point i n  several  of t he  

This  may be due 

This effect w a s  a t t r i b u t e d  t o  t h e  binding of Sb a t  un- 

Whether a similar mechanism 

The var ia t ion  of surface concentration w i t h  su l fur  vapor density 

i s  shown i n  Fig. 19. The surface concentration f o r  t h e  p ro f i l e s  i n  Fig. 

18 appears t o  be proportional t o  t h e  su l fu r  vapor density a t  low surface 

concentrations, and increases more rapidly above lo2' 
s u l t s  are not i n  agreement w i t h  t h e  usual  model of su l fu r  incorporation 

on i so l a t ed  a rsen ic  sites. A discussion of t h i s  and t h e  r e l a t ed  GaP 

r e s u l t s  i s  presented i n  Chapter V. 

These re- 



- Io'"o 9 2 4 6 8 10 12 

DISTANCE BELOW SURFACE, x (microns) 

Fig. 18. DIFFUSION PROFILES OF SULFUR I N  GaAs AT 
VARIOUS SULFUR PRESSUIiES. 

2. Variation with Arsenic Pressure 

Figure 20 shuws t h e  e f f ec t  of varying the  arsenic  pressure 

while keeping the  temperature and su l fur  vapor density constant a t  lS3O"C 

and 0.2 pg/ml respectively. 

varied from 0 t o  4.4 m g / m l  fo r  t he  prof i les  i n  t h i s  f igure.  

f i l es  have been omitted f o r  c l a r i t y .  

c l ea r ly  t h a t  t he  penetration depth increases as t h e  arsenic  pressure 

increases. 

The excess arsenic  added t o  t h e  ampoule 

Several pro- 

The r e su l t s  demonstrate qu i te  
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SULFUR VAPOR DENSITY, [sv] (pg/rnl I 

Fig. 19. DEPENDENCE OF THE SURFACE CONCENTF~ATION OF 
DIFFUSION PROFILES I N  GaAs ON TKE SULFUR VAPOR 
DENSITY. [AS,] = 4-6 t U g / d - -  

Figure 21  shows more exp l i c i t l y  t h e  dependence of the diffusion 

coeff ic ient  on arsenic  pressure for the  p ro f i l e s  i n  Fig. 20,.as w e l l  as 
addi t ional  data f o r  a temperature of lOO3"C. 

both cases w a s  0.2 pg/ml. 

w a s  assumed t o  be the  same as t h a t  over the gallium-rich l iqu id  i n  the 

Ga-As binary system [33], while the  arsenic pressure when excess arsenic  

w a s  added w a s  obtained from Fig. 10, 

The su l fur  vapor density i n  

The arsenic  pressure when no arsenic  w a s  added 

The results f o r  both temperatures are qui te  similar. 

pressures, t he  diffusion coeff ic ient  increases with increasing pressure 

as (PAs4)'. Above 0.5-1 atmospheres, however, t h e  d f f k s i o n  coeff ic ient  

appears t o  be r e l a t ive ly  independent of the  arsenic pressure. 

A t  l o w  

There have been t w o  other reports  i n  the  literature concerning 

the  var ia t ion of su l fur  diff'usion i n  GaAs with arsenic  pressure. 

reported t h a t  t h e  junction depth obtained when an 
Frieser  

source w a s  used A12S3 
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Fig. 20. DIFFUSION PROFILES OF SULFUR I N  GaAs AT 
VARIOUS ARSENIC PRESSURES. 

was the  same when e i t h e r  crushed G a A s  or  elemental arsenic  (amount un- 

specif ied)  w a s  used i n  the  ampoule 131. 
fusion Of su l fur  a t  1000°C w a s  independent of arsenic  pressure above 1 

atmosphere, but noted a very sharp decrease i n  juction depth i n  one run 

a t  lower arsenic  pressure 

t h i s  w a s  l i k e l y  an anomalous r e su l t  due t o  a vapor etching process 121. 
Since Vieland's work w a s  done using the  p-n juct ion method, it i s  a l so  

possible that the  anomalous results were due t o  contamination by other 
e l e c t r i c a l l y  ac t ive  impurit ies [2]. 

Vieland reported tha t  the d i f -  

(PAsq = 0.5 a t m )  [ b ] .  Kendall commented t h a t  
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Fig. 21. DEPENDENCE OF THE DIFFUSION COEFFICIW OF SULFUR 
I N  GaAs  ON THE ARSENIC PRESSURE. [Sv] = 0.2 pg /d .  

A s  previously stated,  t he  radiotracer  techniques w a s  used i n  

In  addition, t he  typ ica l  l o s s  due t o  the experiments reported here. 

vapor etching w a s  only 0.25 micron on each face,  In  contrast  t o  Vieland's 

resu l t s ,  no sharp decrease i n  diffusion coeff ic ient  w a s  observed below the  

knee, although a smooth and continuous decrease i n  penetration w a s  found 

as the  arsenic  pressure decreased from 1 atmosphere t o  the  pressure over 

t he  gallium-rich l iquid.  

orders of magnitude i n  arsenic pressure, and i s  not i n  agreement with a 

vacancy model of diffusion within the  arsenic  sublat t ice .  

discussed i n  Chapter V. 

This var ia t ion occurred over more than t w o .  

This point i s  

The reason f o r  t he  knee i n  the  D versus  PA^^ curve i s  of 

some in t e re s t .  It i s  possible t h a t  t he  knee occurs because of some non- 

equilibrium effect, e.g., between the  external  arsenic  vapor and the  

vacancy concentration i n  the  c rys ta l .  

an e f f ec t  w a s  important, a number of samples w e r e  preannealed f o r  5 days 

a t  1003°C under t h e  same arsenic  pressures t h a t  would be used during the  

diffusion anneal. The ampoules were quenched t o  room temperature, and 

I n  order t o  determine whether such 
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t he  samples were removed. 

radioactive sulfur-35, and the  appropriate amounts of arsenic.  They were 

then diffused f o r  12 hours a t  lOO3"C. 

dashed curve i n  Fig. 21. Although the  r e s u l t s  ind ica te  a s l i g h t  decrease 

i n  diffusion coeff ic ient ,  the  shape of t he  curve remains t h e  same. 

it i s  unl ikely t h a t  non-equilibrium e f fec t s  between the  vapor and the  

so l id  are responsible for the  knee. 

e ra ture  that suggests tha t  the  vacancy concentration i n  compound semi- 

The samples were then encapsulated w i t h  

The r e s u l t s  are shown by the 

Thus 

There i s  other  evidence i n  the  lit- 

conductors comes i n t o  equilibrium w i t h  t he  ex terna l  vapor i n  times short  

compared w i t h  t he  diffusion t i m e  of slowly-diffusing impurit ies 134,351. 

The knee could be caused by a sa tura t ion  e f fec t ,  e.g., i n  t h e  

concentration of t he  nat ive defect responsible for the  ciiffusion. Curves 

qua l i t a t ive ly  s i m i l a r  t o  t h e  r e s u l t s  presented here w i t h  knees at  about 

1 atmosphere have been reported f o r  t he  diffusion of s i l i con  [36] and t i n  

[22] i n  GaAs. However, t h e  experimental data was obtained from p-n junc- 

t i o n  work, and in te rpre ta t ion  of the  r e s u l t s  may be complicated due t o  

the  amphoteric nature of these impurit ies,  

e f f e c t  f o r  the  diffusion of Mn i n  GaAs a t  900°C f o r  a rsen ic  pressures as 

high as 3 atmospheres [34]. 

t i o n  of gallium and arsenic  vacancies does not sa tura te  a t  these pres- 

sures. I n  addition, t he  a rsen ic  pressure i n  the  binary Ga-As system a t  
t h e  arsenic-r ich s ide  of t h e  GaAs solidus region appears t o  be an order 

of magnitude higher than the  pressures a t  the  knee 1331. 
unl ikely t h a t  a sa tura t ion  i n  the  concentration of native defects  i s  re- 

sponsible f o r  t h e  knee. 

Se l t ze r  found no sa tura t ion  

This  appears t o  ind ica te  t h a t  t he  concentra- 

Thus it appears 

It should be noted tha t  a simple superposition of two competing 

diffusion modes cannot explain the  observed shape of the  D versus Pas4 

curve. For t h i s  case 

where Da and Db a r e  constants. It is  c l e a r  t h a t  such a model cannot 

explain t h e  experimental r e s u l t s  since it predic t s  a constant diffusion 
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coeff ic ient  a t  l o w  arsenic  pressures. 

ment with the  experimental results which show a saturat ion of D a t  

high arsenic  pressures. 

I n  Chapter V, a model i s  proposed t o  explain both the square 

T h i s  prediction i s  not i n  agree- - 
- 

root dependence a t  l o w  arsenic  pressures, and the saturat ion behavior 

a t  high pressures. 

3. Variation with Temperature 

Figure 22 shows p ro f i l e s  f o r  which the  temperature w a s  varied 

from 900 t o  120OOC. 

ac tua l  diffusion times were 20 minutes a t  E O 3 O C ,  1 hour a t  l130°C, 12  

hours a t  lOO3'C, and 5 days a t  900°C. 

0.2 pg/ml f o r  a l l  prof i les ,  and the arsenic vapor density was 3-5 mg/ml. 

These experimental parameters should provide well-defined values of 

act ivat ion energy since, from the previous section, the  operating point 

should be i n  the  saturat ion region of t h e  D versus  PA^^ curve. 

The diffusion t i m e  w a s  normalized t o  12 hours, The 

The su l fu r  vapor density w a s  

I NORMALIZED TIME I 2 hrs 
[s"] = 0.2~9 /mi 

[Asv] = 3 - 5mg/mI 
T = 0 900OC 

0 - 
I0l9L . 

I \ I  \, I I I \  
5 10 15 20 25 30 35 

DISTANCE BELOW SURFACE, x (microns) 

Fig. 22. DIFFZTSION PROFILES OF SULFUR I N  G a A s  AT VARIOUS 
TEMPEWQURES. Actual diffusion times are 20 min a t  
l2O3OC, 1 h r  a t  l130°C, 12 h r  a t  lOO3OC, and 5 days a t  
gooo c . 
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The diffusion coeff ic ients  determined from the  p ro f i l e s  are 

plot ted i n  Fig. 23 as a function of reciprocal temperature. 

l i n e  through the  experimental points  yields  

A s t r a igh t  

(3.6) 2 D = 1.83 X lom2 e@(- 2.6/kT) cm /see . 

A comparison with the  r e su l t s  of other workers i s  given i n  Chapter IV. 

TEMPERATURE, T ("C) 
I200 I100 1000 900 

f f f 
[s"] = 0.2pg/m1 

[Asv] = 3-5 mg/m I 

D 

2 - w 

0 
0 

z 
v) 
3 
L 

0 

- 

E! 

k 10-13- 

- 

I I I I I 

7.0 7.5 8.0 8.5 9 .O 
RECIPROCAL TEMPERATURE , I O ~ / T  (OK-') 

Fig. 23. DEPENDENCE OF THE DIFFUSION COEFFICIENT OF SULl?UR 
I N  GaAs ON TEbPERATU33E. 
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4. Variation with Background Doping 

In  a ternary system involving pure GaAs and a s ingle  diffusing 

impurity, t he  phase ru l e  indicates  t h a t  there are three degrees of free- 
dom within the  solidus region. 

s i b l e  i n  impure GaAs. 

neu t r a l i t y  balance between charged: native defects, background impurities, 

and the  diffusing impurity. 

t i ons  of the  various charged species may be varied, thus a f fec t ing  t h e  

diffusion. By studying the  diffusion of impurit ies i n  impure semicon- 

ductors, doped t o  a l eve l  above the  i n t r i n s i c  c a r r i e r  concentration a t  

the  diffusion temperature, important information can be obtained about 

t he  mechanism of diffusion,  T h i s  technique has been used t o  study i m -  
pur i ty  diffusion i n  G e  [371, S i  [381, and GaAs  [3l] .  

An addi t ional  degree of freedom i s  pos- 

The Fermi level i s  determined by the charge 

By changing the  Fermi level,  t he  concentra- 

Figure 24 compares the  r e su l t  of diffusing su l fur  i n t o  both 

undoped and heavily-doped n-type G a A s  under an arsenic pressure of about 

1 atmosphere. The impure sample w a s  doped w i t h  tel lurium and had a 
c a r r i e r  concentration of 5-6 x 10 cm . The undoped c rys t a l  had an 

electron concentration of lO1’-1O cm . The prof i les  f o r  the two 

samples are p rac t i ca l ly  ident ica l .  

5-day diffusion a t  900°C under essent ia l ly  the  same conditions of su l fur  

and arsenic pressure. 

18 -3 
16 -3 

Similar r e s u l t s  were obtained f o r  a 

It i s  possible tha t  the  r e s u l t s  of diff’using i n t o  undoped and 

heavily-doped material were iden t i ca l  because of outdiffusion of t e l l u -  

rium near t he  surface of the  heavily-doped sample. 

b i l i t y  homogenous c rys t a l s  of GaAs  (Te, n = 5-6 x lo1* 
nealed, both with no excess arsenic, and w i t h  an arsenic  pressure of 

several  atmospheres, a t  1000°C for 11.25 hours. The electron concentra- 

To check t h i s  possi- 

were an- 

t i ons  after the anneal as determined by a plasma ref lec t ion  technique 

(described i n  Chapter I V )  are shown i n  Fig. 25. 

The r e s u l t s  indicate  that ,  although there is  s ignif icant  out- 
18 

Outdiffusion (and presumably indiffusion)  of Te  

diffusion, t he  electron concentration i s  s t i l l  greater  than 2.5 x 10 

at the  surface. 

i s  seen t o  be more rapid a t  t h e  higher arsenic  pressure. T h i s  r e su l t  
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ioi9 

Fig. 24. DIFFUSION PROFILES OF SULFUR I N  UNDOPED AND 
HEAVILY-DOPED n-TYPE GaAs. 

c 

T =  1003°C 

[Asv] =4.3mg/ml 
3 t = 12hrs 

would be expected i n  analogy with our r e s u l t s  of su l fur  diffusion i n  

G a A s  reported previously. 

e ra ture  concerning t h e  var ia t ion of Te  diffusion i n  GaAs with arsenic  

pressure. 

However, there  has been no report  i n  t h e  lit- 

3 
LL 
J 
3 
v) 

The significance of these r e su l t s  i s  discussed i n  Chapter V. 

I I I I I I 
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V 

Fig. 25. OUTDIFFUSION PROFILES OF TELLURIUM FROM 
HEAVILY-DOPED G a A s  UNDER HIGH AND LOW ARSENIC 
PRESSURES. The electron concentrations were 
determined by the  plasma re f lec t ion  technique 
described i n  Chapter I V .  T = 1000°C; t = 11.25 
hours. 
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PRECEDING PAGE BLANK NOT FILMEB. 

Chapter I V  

ELECTRICAL PROPE!RTIES OF SULFUR I N  GaP AND G a A s  

The radiotracer  technique discussed i n  the  previous chapter i s  

usefu l  i n  diffusion and so lub i l i t y  s tudies  because information about t he  

t o t a l  impurity content i s  obtained. 

vices, it i s  frequently more important t o  have information about the  

e l e c t r i c a l l y  ac t ive  part of t he  t o t a l  impurity concentration. 

pa r t i cu la r ly  t r u e  when a one-to-one correspondence between donor i m -  

pur i ty  and electron concentrations does not ex is t .  

However i n  t h e  fabricat ion of de- 

T h i s  i s  

The t o t a l  impurity and electron p ro f i l e s  i n  sulfur-diffused layers  

i n  Gap and G a A s  were determined i n  t h i s  study by the use of incremental 

radiotracer  and H a l l  or  plasma reflec%ion techniques. In  t h i s  chapter, 

the  experimental techniques are described and the experimental r e su l t s  

are presented. All measurements of electron concentration were made a t  
room temperature. A large discrepancy w a s  found between t h e  t o t a l  sul-  

f u r  concentration and the  electron concentration i n  the  diffused layers. 

The existence of e l e c t r i c a l l y  inact ive impurities i n  homogeneous GaP and 

G a A s  c rys t a l s  heavily doped w i t h  the  group V I  donors have been previously 

reported i n  the l i t e r a t u r e  [22, 39-45]. Hawever, there appears t o  have 

been l i t t l e  consideration of such e f f ec t s  i n  diffused layers  i n  these 

materials. 

A comparison between t h e  doping behavior of su l fur  i n  diffused 

layers  and i n  homogeneous melt-grown G a A s  c rys ta l s  i s  presented. 

r e s u l t s  obtained i n  t h i s  study show t h a t  the room temperature electron 

concentration i n  a melt-grown c rys t a l  doped w i t h  su l fur  can be revers- 

i b l y  controlled by su i tab le  annealing a t  elevated temperatures. For a 

given annealing temperature, t he  maximum electron concentration i n  a 

melt-grown c rys t a l  i s  grea te r  than i n  G a A s  doped by diffusion a t  the 

same temperature. However, the electron concentration i s  independent of 

arsenic  pressure i n  both cases. 

caused by t h e  diffusion process may be responsible f o r  the  difference 

between the  c rys t a l s  doped by the two methods. 

The 

It i s  suggested t h a t  precipi ta t ion 
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Finally, a comparison of the diffusion r e su l t s  of su l fur  i n  GaAs 

obtained from t h i s  study and from other reports  i n  t h e  l i t e r a tu re  i s  
presented. It i s  suggested tha t  t he  discrepancy among d i f fe ren t  experi- 

menters may be due i n  pa r t  t o  t he  presence of e l e c t r i c a l l y  inact ive sul-  

f u r  i n  the  diffused layers. 

A. Sulfur Diffused Layers i n  GaP 

1. Incremental Hall Measurements 

Undoped GaP samples were prepared f o r  diffusion as described 

i n  the  previous chapter. An addi t ional  s tep  w a s  added, however, i n  an 

attempt t o  reduce any contamination due t o  copper adsorbed on the  sample 

surface. The samples, as w e l l  as t h e  quartz plates ,  were soaked i n  a 

warm aqueous solution of KCN ( 3  percent) f o r  10 minutes [461, rinsed i n  

deionized water, and dr ied on a piece of f i l t e r  paper. They were then 

loaded i n t o  the  quartz ampoules with appropriate amounts of phosphorus 

and non-radioactive sulfur*, and diffused under the appropriate condi- 

t ions.  A f t e r  t h e  ampoules were quenched i n  water, the  samples were re- 

moved. 

samples approximately 1/8 x 1/4 in.  were cut w i t h  the  wire saw.  

p les  were etched (see Chapter 111) t o  remove about 0.5 micron and then 

dipped i n  HF f o r  15 seconds. 

A w i r e  saw w a s  used t o  eliminate any edge diffusion. Rectangular 

The sam- 

Ohmic contacts were alloyed on a graphite s t r i p  heater i n  a 

forming gas atmosphere t o  form Van der Pauw samples [47]. 
t a c t s  w e r e  formed from a 1 m i l  t h ick  f o i l  of Au-Ge,? 

measurements were then performed. After each measurement, t he  contacts 

w e r e  masked with Apiezon W wax, and the  samples were etched t o  remove 

approximately 1 micron. Although the  diffused layers  were thin,  t h e  

measurement s ens i t i v i ty  w a s  high. 

became insulat ing during the  heat treatment i n  s p i t e  of t he  KCN rinse.  

The ohmic con- 

Incremental H a l l  

Apparently the  bulk of t he  GaP samples 

Although i n  pr inciple  the  mobility, r e s i s t i v i ty ,  and carrier 

concentration can be obtained a t  each point i n  t h e  diffused layer  from 

* 
6 9 s purity,  Electronic Space Products, Inc , Los Angeles, California,  

'12 percent G e ,  Western Gold and Platinum, Belmont, California. 
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incremental H a l l  measurements E48 1, t he  calculat ion involves der ivat ives  

and squares of der ivat ives  of experimentally measured quant i t ies .  

small e r ro r s  are magnified by the  calculation. 

here, an average mobility, of 50 cm /v-sec (estimated from the  i n -  

cremental measurements) w a s  assumed. The technique thus w a s  e s sen t i a l ly  

an incremental sheet r e s i s t i v i t y  measurement, The conductivity, a; a t  

each point i n  t h e  diffused layer  w a s  obtained from the  measured sheet 

conductivity, cs , through t h e  r e l a t ion  

Any 
In  the  work reported 

2 I 

pn, 

d 
a x s  ' alx) = - (r ( 4 4  

and t h e  electron concentration a t  each point i n  t h e  diffused layer  w a s  

obtained from the  conductivity by 

The electron concentration p ro f i l e s  w e r e  obtained from Eqs. (4.1) and 

(4.2). 

2. Experimental Results 

Diffusions were performed a t  1217OC f o r  3 hours t o  determine 

the e f f e c t  of phosphorus pressure on the  electron concentration p ro f i l e s  

i n  Gap. I n  one case, no excess phosphorus w a s  added, and i n  t h e  other, 

2.0 mg/ml w a s  added, 

sulrUr concentration was determined by t h e  rad io t racer  technique on a 

separate sample diffused under iden t i ca l  conditions. 

have been desirable t o  perform the e l e c t r i c a l  and radiotracer  measure- 

ments simultaneously on the  same sample, t h e  masking s t ep  t o  protect  t h e  

ohmic contacts during etching would have introduced la rge  errors i n  the  

t r a c e r  measurement. 

The r e s u l t s  are i l l u s t r a t e d  i n  Fig, 26. The t o t a l  

Although it would 

It is  seen that a t  high sulfur concentrations, t he re  i s  a la rge  
I n  discrepancy between the  t o t a l  su l fu r  and the  electron concentrations. 

addition, t h e  phosphorus pressure appears t o  have l i t t l e  or no e f f ec t  on 

the  electron concentration. 
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[Sv] = 2Q pg/ml 
[P,,] = 0 NONE 

n- Id0 

Y E, x 2.0 mg/ml 

(2 

a 

z 
SULFUR CONCENTRATION 5t 

I- z 
W 
0 z 
0 
2 
0 
I- 
V 
W 
-i 
w 

0 

3 

3 cn 

o !ole 

a 

a 
a CONCENTRATION 

5 l0l8 

I 0l7 

DISTANCE BELOW SURFACE, x (microns) 

Fig. 26. COMF'AFCCSON OF THE ELECTRON (DETERMINED BY INCREMENTAL 

BY RADIOTRACER TECJ3NIQUES) PROFILES I N  DIFF'USED LAYERS I N  GaP 
AT HIGH AND LOW PHOSPHORUS PRESSURES. 
p ro f i l e  i s  given since sulfur diffusion i n  Gap w a s  found t o  
be independent of phosphorus pressure. 

HALL MEASUREMENTS) AND TOTAL SULFUR C O N C ~ R A T I O N  (DETERMINED 

Only one t o t a l  sulfur  

B. Sulfur Diffused Layers i n  GaAs 

I. Plasma Reflection Measurements 

Undoped GaAs samples were prepared f o r  diffusion as described 

i n  the previous section on the  GaP H a l l  measurements. 

loaded with appropriate amounts of arsenic and radioactive su l fur  i n t o  

quartz ampoules. After the diffusion anneal, the ampoules were quenched. 

They were then 
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The samples were removed and 0.150 in. c i r cu la r  d i scs  were cut  out with 

an ul t rasonic  cut t ing too l .  

su l fur  concentration prof i les  w a s  made simultaneously on a s ingle  sample. 

Because of i t s  s implici ty  and sens i t iv i ty ,  a plasma ref lec t ion  technique 

w a s  used t o  determine the  electron concentration p ro f i l e s  [49,50]. In  

t h i s  technique, the  infrared re f lec t ion  spectrum of a heavily doped sam- 

p le  has a d i s t i n c t  minimum whose posit ion depends on t h e  e lectron concen- 

t ra t ion .  

volving a distance on the  order of a f rac t iona l  par t  of the wavelength 

of t h e  l i g h t  i n  t h e  crystal ,  t he  electron concentration a t  t h e  surface 

i s  measured d i r ec t ly ,  By etching away t h i n  layers  of GaAs and determin- 

ing t h e  posit ion of t he  plasma ref lec t ion  minimum as a function of depth, 

the electron d is t r ibu t ion  p ro f i l e  was obtained. The re la t ion  between the 

posit ion of t he  minimum i n  the  re f lec t ion  spectrum and the electron con- 

centration w a s  taken from the  l i t e r a t u r e  J.501. A Perkin-Elmer 621 
Grating Spectrophotometer w a s  used i n  these measurements. 

A determination of t he  electron and t o t a l  

Since the re f lec t ion  i s  essent ia l ly  a surface phenomenon, in-  

It would have been desirable t o  use t h e  plasma ref lec t ion  

technique t o  measure the electron prof i les  i n  GaP because of t he  greater  

s ens i t i v i ty  of t h i s  technique. Hawever there are several  d i f f i c u l t i e s  

i n  applying t h i s  technique t o  Gap. 

t a l  determination of t h e  re la t ionship between electron concentration and 

plasma minimum f o r  t h i s  material. Second, it i s  known t h a t  l o w  mobility 

semiconductors, such as p-type GaAs, yield minima t h a t  are not w e l l  de- 

fined, and whose posit ion as a function of ca r r i e r  concentration is  i n  
disagreement with the  simple model that  appl ies  t o  high mobility semi- 

conductors [9], I n  the  work described here, reproducible re f lec t ion  

spectra could not be obtained on l o w  mobility sulfur-diffused layers  i n  

GaP. 

F i rs t ,  there has been no experimen- 

2. Experimental Results 

A typical r e su l t  f o r  a su l fur  diffused layer  i n  G a A s  i s  shown 

i n  Fig. 27. This data w a s  obtained from a 900°C diffusion. The electron 

concentration i s  constant over a la rge  par t  of t he  prof i le ,  while a t  

lower concentrations, t he  electron and t o t a l  su l fur  prof i les  appear t o  

merge. One or two points near the surface indicate  a somewhat lower 
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Fig. 27. COMPARISON OF THE ELECTRON (DETERMINED BY PLASMA 
REFLECTION TECHlvIQUES) AND TOTAL SULFUR CONCENTRATION 

DIFFWSED LAYER I N  GaAs. 
(DETERMINED BY RADIOTRACER TECHNIQUES) PROFILES IN A 

electron concentration than i n  the  bulk. However t h i s  i s  believed t o  be 

a surface e f f ec t  and not one due t o  the  high su l fur  concentration f o r  

t he  follawing reason. 

t r a t i o n  w a s  lawered from 2 X lo2' t o  2 x lo1' emm3 indicated that ,  al-  

though the  electron concentration i n  the  bulk remained unchanged, t he  

surface point again w a s  low. The exact nature of t h i s  surface e f f ec t  Is 
not known, but it i s  in te res t ing  t o  note t h a t  similar effects have been 

observed i n  t in-diffused layers  i n  G a A s  [ 2 3 ] .  

Experiments a t  1130°C i n  which the  surface concen- 

R 

I n  any case, a comparison 
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of the  two p ro f i l e s  i n  Fig. 21 indicates  t h a t  a large concentration of 

t h e  su l fur  i n  t h e  diffused layer  is inact ive e l ec t r i ca l ly .  

The r e s u l t s  discussed above can be replot ted t o  shaw the  

electron concentration, 

t ra t ion ,  [SI. This i s  Shawn i n  Fig. 28 f o r  a number of temperatures 

ranging from 900 t o  1 2 0 0 ° C .  

be a l i n e a r  dependence of n on [SI, while a t  high su l fur  concentra- 

t ions,  t he  electron concentration appears t o  saturate .  The dmpoff a t  

n, as a function of t he  t o t a l  su l fur  concen- 

A t  lower concentrations, there  appears t o  

I "  
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t he  highest concentrations i s  due t o  t h e  surface e f f ec t  mentioned i n  t h e  

previous paragraph. It can be seen t h a t  as t h e  temperature increases, 

t h e  maximum electron concentration increases from 1.6 x 1 O l 8  

9 0 0 ° C  t o  5 X 10l8 
t he  data of Kendall [21. 

a t  

a t  1 1 3 0 ° C .  The point a t  9 0 0 ° C  agrees w e l l  w i t h  

- - 
- 

- 

T =  I 900°C 

4 1003°C 

I 1130°c 
0 120O0C 

I I I 1 I I I 

SULFUR CONCENTRATEON, [SI ( cG3) 

Fig. 28. DEPENDENCE OF THE EL;ECCRON C O N C m R A T I O N  ON THE 
TOTAL SULFUR CONCENTRATION I N  DIFFUSED LAYERS I N  GaAs AT 
VARIOUS TEXQERATURES. [AS I = 3-3 mg/ml, Isv] = 6 pg/d. 

V 
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Although these diffusion were done w i t h  a n  arse 

1-2 atmospheres, experiments a t  1130°C i ate t h a t  t he  maxi 
concentration w a s  unchanged when no cess arsenic  w a s  ed. This re- 

s u l t  i s  i n  agreement with the  result s. 

In  order t o  understand the  large discrepancy between the  electron 

and su l fur  concentration prof i les  i n  the  diffused layers, it is  necessary 

t b  determine whether t h i s  property i s  i n t r i n s i c  t o  a given semiconductor- 

impurity system, or whether it depends on the method by which t h i s  i m -  

pur i ty  i s  introduced i n t o  t h e  crystal .  It i s  known t h a t  i n  solution- 

grown crys ta l s  of GaP [39,53] and melt-grown crys ta l s  of G d s  [40-451 
heavily doped w i t h  t he  group V I  impurities S, Se, and Te, a large con- 

centration of these donor impurities i s  e l e c t r i c a l l y  inactive. 

a l so  known t h a t  it i s  possible t o  reversibly control the  electron con- 

centration i n  melt-grown G a A s  heavily-doped w i t h  Se and T e  by sui table  

annealing a t  elevated temperatures [42]. 
f u r  behaved i n  the same manner, experiments s imilar  t o  tha t  of Ful ler  and 

Wolfstirn [42] w e r e  performed on a Czochralski pulled GaAs crystal .  Th i s  

c rys t a l  was heavily-doped w i t h  sulfur* w i t h  a nominal (as received) elec- 

t ron  concentration of 3 x 1Ol8 cmm3, mobility of 1000 cm /v-sec, and 

dislocation density of 10 cm . The orientation w a s ( 1 1 1 )  

It i s  

I n  order t o  determine i f  sul-  

2 

3 -2 

The samples were prepared as described i n  Chapter 111, and then 

soaked i n  a w a r m  KCN solution f o r  10 minutes t o  reduce copper contamina- 

t ion.  

arsenic)  w i t h  volumes of about 0.5 cm , heated t o  llOO°C f o r  10 minutes, 

and quenched. 

6 0 0 " ~  and 120OOC f o r  times long enough t o  a t t a i n  an equilibrium electron 

concentration. The electron concentration w a s  determined using the  plasma 

ref lect ion technique described previously. A f t e r  each anneal, t he  c rys t a l  

w a s  mechanically polished t o  eliminate surface e f fec ts  and those due t o  

outdiffusion of su l fur  before the  plasma ref lec t ion  measurement was made. 

They were then sealed i n  quartz ampoules (generally w i t h  no excess 
i3 

They were then annealed a t  various temperatures between 

1 of 1-2 mils w a s  suf f ic ien t  f o r  t h i s  purpose. Van der 

ompany, St.  Lou 
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PaUW measurements [47] on several  samples indicated t h a t  the  annealing 

phenomenon w a s  a bulk effect. 

t h a t  t he  equilibrium electron concentration w a s  a function of temperature 

alone, and appeared t o  be independent of t he  h is tory  of t h e  sample. 

Experiments on several  samples indicated 

The t i m e  t o  a t t a i n  equilibrium a t  each temperature w a s  approximately 

t h e  same as reported by Ful ler  and Wolfstirn f o r  Se and Te, ranging from 

less than 1 hour a t  1200°C t o  6 weeks a t  6oo0c. These t i m e s  d id  not ap- 

pear t o  be markedly affected by the  arsenic  pressure during the  anneal. 

The equilibrium electron concentrations a t  each annealing temperature f o r  

t he  sulfur-doped c rys t a l  used are shown i n  Fig. 29, along with some addi- 

t i o n a l  data f o r  a Te-doped GaAs c r y s t a l  ( the properties of t h e  Te-doped 

c rys t a l  were given i n  Chapter 11). The data of Fuller and Wolfstirn i s  

a l s o  shown i n  Fig. 29. Although there  i s  a s l igh t  difference between our 

data and t h a t  of Ful ler  and Wolfstirn, the  behavior of melt-grown crys- 

t a l s  doped with S, Se, and Te appears t o  be similar. 

Several experiments i n  which excess arsenic  pressures of 1-2 atmo- 

spheres were used indicated that the  equilibrium electron concentration 

w a s  not affected by the  arsenic  pressure. This r e su l t  i s  consistent with 

the  behavior of t he  sulfur-diffused layers  i n  GaP and GaAs discussed pre- 

viously. The electron concentration t h a t  i s  "frozen" i n t o  the  as- 

received melt-grown c rys t a l s  appears, from Fig. 29, t o  be charac te r i s t ic  

of temperatures between 800 and 900°C. 

Schottky's estimate C40 ] f o r  Se-doped GaAs crystals .  

T h i s  i s  i n  good agreement w i t h  

The maximum electron concentration i n  G a A s  c rys ta l s  doped w i t h  sul- 

f u r  by diffusion i s  a l s o  shown i n  Fig. 29. 

diffusion temperature, the  maximum electron concentration i n  the  aiffused 

layer  i s  s igni f icant ly  less than i n  GaAs doped from t h e  m e l t  and annealed 

a t  the  same temperature. Although copper contamination e f f ec t s  cannot be 

ruled out completely (Spectrosil  quartz w a s  not used [54]), t h e  e f f ec t  

of copper at a given temperature should be about the  same f o r  both dif- 

fused and melt-grmn samples, since the  same grade of quartz was used i n  

both experiments. 

real difference between the  electron concentration i n  c rys t a l s  grown 

from the  m e l t  and crystals doped by diffusion. 

It i s  seen t h a t  f o r  a given 

Thus a t  a given temperature, there  appears t o  be a 
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D. Discussion 

1. 

The presence of e l e c t r i c a l l y  inac t ive  impurities i n  heavily- 

doped semiconductors i s  not unusual s ince such e f f e c t s  have been observed 

previously i n  G e  and S i  c rys t a l s  1551. Extensive work on t h i s  problem 

has been done on GaAs heavily-doped w i t h  Se and T e  [40-45]. 
there  has been l i t t l e  reported on the  e l e c t r i c a l  propert ies  of sulfur-  

doped GaAs, t he  annealing r e s u l t s  reported i n  the  previous section ind i -  

ca te  that the  e l e c t r i c a l  behavior of a l l  group V I  donors (S, Se, and T e )  

i n  GaAs  i s  probably due t o  a common phenomenon. 

doping behavior of these donors i n  GaP i s  a l s o  due t o  a similar cause 

[39]. The behavior of melt-grown GaAs c rys t a l s  heavily doped w i t h  sul-  

f u r  w i l l  be discussed i n  t h i s  section. 

be presented t o  explain the  existence of a la rge  concentration of e lec-  

t r i c a l l y  inac t ive  impurit ies.  Then the  revers ib le  changes i n  t he  elec- 

t ron  concentration during annealing w i l l  be discussed. 

Although 

It i s  l i k e l y  t h a t  t he  

F i r s t ,  an equilibrium model w i l l  

Compensation i s  not believed t o  be a major reason f o r  the  d is -  

crepancy between the  impurity and f r e e  electron concentrations f o r  several  

reasons. For a given electron concentration, the  mobil i t ies  i n  GaAs crys- 

t a l s  heavily-doped w i t h  Se were reported t o  be higher than i n  s l l i con-  

doped (self -compensated) c rys t a l s  1141. Furthermore, t he  spec t ra l  shape 

of recombination rad ia t ion  from Te-doped G a A s  excited by an electron beam 

w a s  not cha rac t e r i s t i c  of a compensated sample 1561. 
examples, compensation i s  not expected t o  be an important f ac to r  i n  ex- 
plaining the  e l e c t r i c a l  propert ies  of sulf’ur-doped GaAs.  

By analogy w i t h  these 

The usual  model t h a t  i s  invoked t o  explain the  la rge  concentra- 

t i ons  of e l e c t r i c a l l y  inac t ive  impurit ies i n  melt-grown G a A s  heavily- 

doped with Se and Te 140,411 w i l l  be used here t o  explain the  behavior of 

sulfur-doped GaAs.  

GaAs (up t o  8 equimol percent) and GaP (up t o  70 equimol percent) 1571. 
G a  S 

s t ruc ture  with one-third of t he  gallium sites vacant. 

atoms on the  anion s i te  are assumed t o  be normal donors. 

The compound G a  S i s  known t o  be qu i t e  soluble i n  
2 3  

i s  a diamond-like defect semiconductor, having a zincblende l a t t i c e  
2 3  

I so la ted  su l fu r  

A t  high su l fur  
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concentrations, however, t he  neut ra l  complex V S may be formed. Th i s  

is ,  of course, simply the  so l id  solut ion of G a  S i n  GaAs or Gap. 
G a  3 

2 3  
The formation reaction i n  GaAs may be wr i t ten  as 

+ 
‘As where 

a gallium vacancy. 

conduction band, there  probably a r e  no neut ra l  donors a t  room tempera- 

ture .  

su l fu r  i s  much l a rge r  than  f o r  GaAs [40,58,591.) 
t i o n  f o r  Eq. (4.3) i s  

i s  t h e  usual  su l fu r  donor on the  a rsen ic  site, and VGa i s  

Because of t h e  merging of the  impurity band with the 

(This  may not be t r u e  f o r  GaP f o r  which t h e  ionizat ion energy f o r  

The mass ac t ion  equa- 

(4.4) 

where i s  an equilibrium constant t h a t  depends only on temperature. 

A t  high su l fu r  concentrations when t h e  GaAs  i s  ex t r in s i c  and su l fu r  can 

be assumed t o  be predominately i n  the  form of the  complex, 

K1 

Equations (4.4) and (4.5) may be solved f o r  t he  electron concentration, 

yielding 

Equation (4.6) ind ica tes  that ,  a t  high su l fu r  concentrations, t he  electron 

concentration should depend only weakly on the  t o t a l  su l fu r  concentration 

( t h i s  implies a la rge  concentration of e l e c t r i c a l l y  inact ive impurit ies ) 
and on t h e  arsenic  vapor pressure. 

agreement w i t h  t he  r e s u l t s  reported i n  the  previous sections.  

These r e s u l t s  a r e  i n  qua l i t a t ive  

The exact 



dependence of t h e  electron concentration on the  t o t a l  impurity concentra- 

t i o n  a t  a given annealing temperature w a s  not determined fo r  homogeneous 

sulfur-doped GaAs c rys ta l s  i n  t h i s  study. Powers ranging from +1/6 - l / 3  
have been reported for melt-grown G a A s  doped with Se [22,40-41]. 
resu l t s ,  however, w e r e  obtained from measurements on as-grown crys ta l s  

subjected t o  unspecified annealing treatments during the  cooling cycle, 

and do not necessarily represent equilibrium r e s u l t s  p0,44]. The equi- 

data of Ful le r  and Wolfstirn [42] indicate  t h a t  f o r  a given annealing 

temperature, the electron concentration appears t o  be r e l a t ive ly  inde- 

pendent of the  t o t a l  impurity concentration. Unfortunately, t h e i r  data 

a re  limited, and the  t o t a l  impurity concentrations i n  t h e i r  c rys ta l s  are 

not specified.  More work i s  needed t o  determine the  exact dependence of 

e lectron concentration on the  t o t a l  impurity concentration. 

These 

'GaS3' 
cannot account f u l l y  f o r  t h e  e l e c t r i c a l l y  inact ive form of the  impurity. 

Small prec ip i ta tes  of Ga Se and G a  Te  have been detected i n  heavily- 

doped G a A s  grown from the  m e l t ,  and by l iqu id  and vapor phase epitaxy us- 

ing electron microscopy techniques [60,61]. A s imilar  observation w a s  

made for  Te-doped GaP [53]. These prec ip i ta tes  may be regarded a s  micro- 

scopic c luster ings of the  complexes invoked i n  the  equilibrium model. It 
has been suggested t h a t  i so la ted  complexes, V Ga Te 3, a r e  present a t  medium 

tellurium concentrations, but t h a t  t he  prec ip i ta tes  form when the so l id  

so lub i l i t y  l i m i t  of G a  T e  i n  GaAs i s  exceeded [60]. However, it i s  d i f -  

f i c u l t  t o  account for t h e  G a  Se prec ip i ta tes  i n  G a A s  using t h i s  argument 

since G a  Se 

It appears t h a t  non-equilibrium arguments must be invoked i n  t h i s  case. 

There i s  some evidence t h a t  neutral  complexes, such as 

2 3  2 3  

2 3  
2 3  

and G a A s  are soluble over t h e  whole range of compositions [57]. 2 3  

I n  v i e w  of the d i f f i c u l t i e s  discussed above re la t ing  t o  the  

unknown variat ion of electron concentration w i t h  t o t a l  impurity concen- 

t ra t ion ,  and possible non-equilibrium effects during c rys t a l  growth, a 

quant i ta t ive application of t he  simple equilibrium model discussed pre- 

viously seems unwise. However, t he  large concentrations of e l ec t r i ca l ly  

inac t ive  sulfur atoms observed i n  homogeneous GaAs c rys ta l s  appears t o  

be adequately explained, a t  least qual i ta t ively,  by t h e  formation of 

neut ra l  complexes, and possibly precipi ta tes .  D a t a  on annealed m e l t -  

grawn GaAs [43,56] and solution-grown GaP [39] indicates  t h a t  t he  
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discrepancy between t o t a l  impurity and electron concentrations decreases 

i n  t h e  series : S, Se, Te. Whether t h i s  i s  a fundamental difference or 
an e f f ec t  due t o  d i f f e ren t  rates of prec ip i ta t ion  could only be deter- 

mined by addi t iona l  studies.  

The revers ib le  changes i n  e lectron concentration observed i n  

GaAs heavily-doped with Se and Te  have been a t t r i bu ted  t o  t h e  formation 

and dissolut ion of molecular-sized aggregates of donor atoms, possibly 

t h e  V Se complexes discussed previously 1421. In  v i e w  of t h e  r e s u l t s  

f o r  sulfur-doped GaAs presented i n  the  previous section, it seems l i k e l y  

t h e  same phenomenon i s  responsible f o r  t he  annealing behavior of GaAs 

doped w i t h  a l l  group V I  donor impurities. 

G a  3 

2. Sulfur Diffused Layers i n  Gap and G a A s  

The r e s u l t s  of the  first two sect ions of t h i s  chapter ind ica te  

t h a t  a la rge  concentration of the su l fur  i n  the  diffused layers  i n  GaP 

and GaAs i s  e l e c t r i c a l l y  inact ive.  Similar r e s u l t s  have a l s o  been ob- 

served i n  phosphorus-diffused layers  i n  s i l i con  [62,63]. 

section, it w a s  shown t h a t  homogeneous G a A s  c rys t a l s  doped w i t h  su l fu r  

a l s o  exhibi t  t h i s  discrepancy between electron and t o t a l  impurity con- 

centration; i n  homogeneous c rys t a l s  this result w a s  a t t r i b u t e d  t o  t h e  

formation of neut ra l  complexes and possibly prec ip i ta t ion  of a second 

phase. 

lated t o  t h a t  of t he  homogeneous crystals .  

viously f o r  GaAs a t  a given temperature that  the  maximum electron con- 

centrat ion i n  the  diffused l aye r  w a s  s ign i f i can t ly  less than i n  the  

homogeneous c rys ta l .  

In  the  previous 
/ 

The behavior of the layers  doped by diffusion i s  ce r t a in ly  re- 
However it w a s  shown pre- 

A possible reason f o r  t h i s  difference i s  the formation of 
diffbsion-induced dis locat ions and prec ip i ta t ion  due t o  stresses caused 

by the  incorporation of high concentrations of sulfur i n  the GaAs lat-  

t i ce .  This p o s s i b i l i t y  has been suggested i n  the  l i t e r a t u r e  f o r  high- 

concentration Te  and Se diffusions i n  GaAs 1441, and there  i s  experi- 

vidence f o r  such prec ip i ta t ion  when !Zn i s  diffused i n t o  GaAs  

[64,63] and Gap [l8]. 
found i n  t h i s  study using etch techniques and op t i ca l  microscopy, a more 

ca re fu l  study using electron microscopy would be useful.  

Although no evidence f o r  such p rec ip i t a t e s  w a s  
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Due t o  t h e  lack of homogeneous GaP c rys t a l s  heavily-doped w i t h  

sulfur ,  annealing experiments similar t o  those done w i t h  GaAs w e r e  not 

performed. Because of t h i s ,  it i s  d i f f i c u l t  t o  make any comment about 

the  p o s s i b i l i t y  of su l fu r  prec ip i ta t ion  i n  t he  Gap diffused layers.  

However, it i s  noted t h a t  t he  mismatch between the  te t rahedra l  covalent 

r a d i i  of P (1.10 A )  and S (1.04 A )  i s  s ign i f i can t ly  l e s s  than be- 

tween t h a t  of As  (1.18 A) and S [lOS]; so t h a t  l e s s  prec ip i ta t ion  

might be expected i n  sulfur-diffused layers  i n  Gap. 

E. Some Consequences of t h e  High Concentration E lec t r i ca l  Behavior 
of Group V I  Donors i n  GaP and G a A s  

GaAs which i s  heavily-doped with Se and Te exhibi ts ,  i n  addition 

t o  the  usual shallow donor level ,  a deep donor l e v e l  near t h e  valence 

band [41,60]. T h i s  l e v e l  i s  usual ly  a t t r i bu ted  t o  the  neut ra l  complexes 

discussed previously. Kressel has shown t h a t  t he  photoluminesence e f f i -  

ciency of solution-grown GaAs and GaP decreases sharply a t  high donor 

concentrations, and has a t t r i b u t e d  t h i s  t o  the  formation of complexes 

and p rec ip i t a t e s  which introduce non-radiative recombination centers 

[33,60]. T h i s  r e s u l t  obviously has important device implications. 

The presence of e l e c t r i c a l l y  inac t ive  su l fur  i n  diffused layers  i s  
a l s o  of interest because it might explain some of t h e  discrepancies 

among reported values of t he  diffusion coef f ic ien t  of su l fu r  i n  G a A s .  

Figure 30 summarizes the  r e s u l t s  of d i f f e ren t  experimenters [2], as w e l l  

as those of t h i s  study. 

tween d i f fe ren t  observers have already been discussed i n  t h e  literature 

l2,66]. 
posed t o  explain these differences.  

pressure and t h e  presence of e l e c t r i c a l l y  inac t ive  su l fur  i n  the  d i f -  

fused layers.  

Some possible reasons f o r  the  differences be- 

In  t h e  following discussion, two addi t iona l  reasons are pro- 

These a r e  the  e f f ec t  of arsenic  

It i s  believed t h a t  t he  anomalously l o w  values obtained by Goldstein 

are due t o  vapor etching of t h e  samples during the  diffusion 12,211. 

t he  data  i n  t h e  previous chapter, it i s  c l ea r  t h a t  the  diffusion coeff i -  

c i en t  of su l fu r  i n  GaAs  depends strongly on the  arsenic  pressure. 

might explain the  s l i g h t  difference between t h e  r e s u l t s  of Kendall 121 

and Vtehnd [4]. 

From 

This 
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Fig. 30. COMPARISON OF THE TEMPERATURE DEPEXDEXKE OF THE 
DIFFUSION COEFFICIEIW OF SULFUR I N  GaAs AS REPORTED BY 
DIFFERENT WORKERS. 

There remains, however, a ra ther  large discrepancy between the  

values of Kendall and Vieland, on the  one hand, and t h a t  of Fr ieser  131 
and t h i s  study, on the  other. An important difference i s  tha t ,  i n  t h i s  

study, t h e  radiotracer  technique w a s  used i n  conjunction with H a l l  and 

plasma. re f lec t ion  methods t o  study the  diffusion and doping process, 

w h i l e  p-n junction or sheet r e s i s t i v i t y  techniques were used i n  the  

other studies. An implici t  assumption i n  the  la t te r  methods i s  t h a t  a l l  
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impurit ies are ionized a t  the  measurement temperature. 

discussed previously i n  t h i s  chapter show c l ea r ly  t h a t  t h i s  assumption 

i s  not va l id  a t  high impurity concentrations. It can be seen from Figs. 

26 and 27 t h a t  experiments t h a t  measure only t h e  e l e c t r i c a l l y  ac t ive  

pa r t  of t h e  impurity d is t r ibu t ion  i n  the  diffused layers  can eas i ly  re- 

s u l t  i n  apparent diffusion coef f ic ien ts  t h a t  are too  high. 

a general  c r i t i c i sm of most of t he  work previously reported i n  t h e  l i t e r -  

a tu re  i s  t h a t  insuf f ic ien t  d e t a i l s  are given as t o  the  degree t o  which 

the  r e s u l t s  are affected by vapor etching phenomena, arsenic  pressure 

variations,  o r  t h e  presence of e l e c t r i c a l l y  inac t ive  impurities. 

The r e s u l t s  

Unfortunately, 
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Chapter V 

DIFFUSION MODELS FOR SULFUR I N  Gap AND G a A s  

Impurity and self diffusion i n  I I I - V  compounds have been reviewed 

by a number of authors [2,66-691. 
single subla t t ice  has been proposed t o  explain the  observed behavior of 

both host and impurity atoms i n  these materials [66-691. However, t h i s  

model w a s  based solely on measurements of diffusion coeff ic ient  a s  a 

function of temperature. I n  t h i s  chapter, t he  appl icabi l i ty  of t h i s  

model t o  sulfur  diffusion i n  GaP and G a A s  i s  examined. Par t icular  em- 

phasis i s  placed on the  dependence of diffusion coefficient on component 

pressure, It i s  concluded t h a t  the  sublat t ice  model i s  not i n  agreement 

with the experimental results. 

a l so  suggested t o  explain sulfur  diffusion i n  G a A s  [70], i s  examined and 

similar conclusions are reached. 

A model of vacancy diffusion within a 

The interstitial-substitutional model, 

Models t h a t  explain t h e  observed diffusion behavior of sulfur  i n  

Gap and GaAs are proposed. 

face concentration with sulfur  pressure i s  pointed out, and possible 

reasons f o r  t h i s  behavior a re  discussed. 

In  addition, t he  anomalous variation of sur- 

A. Sublatt ice Model of Diffusion 

The subla t t ice  model w a s  proposed as a possible mechanism of self 

diffusion i n  an ordered binary system such as a I I I - V  compound semicon- 

ductor [71 I. 
by means of vacancies, 

nearest-neighbor vacancy, as i n  the  case of G e  and Si, but t o  a vacancy 

located a t  the  second-nearest-neighbor posit ion on the  same sublat t ice  

f681. This model w a s  motivated by the  zincblende s t ructure  of t he  I I I - V  

compounds which can be regarded as two interpenetrating f.c.c. l a t t i ce s .  

Since l i t t l e  experimental evidence of ant i -s t ructure  defects, i.e., of 

e i the r  atomic species on the  wrong sublatt ice,  had been presented, the  

model appeared t o  be a reasonable one. 

This  model i s  essent ia l ly  t h a t  of subst i tut ional  diffusion 

However the  basic jump process i s  not t o  a 

Experimental evidence i n  support of the  sublat t ice  model w a s  given 

by Eisen and Birchenall from self diffusion experiments i n  GaSb and InSb 
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[72], and by Goldstein f o r  similar work i n  G a A s  and InP 111. 
these cases, s e l f  diffusion measurements as a function of temperature 

showed t h a t  t he  group V element diffused slower, and with a l a rge r  a c t i -  

vation energy, than  t h e  group I11 element, regardless of t he  s i z e  of the  

atoms. The covalent bonds around each atom i n  the  c rys t a l  contain eight  

electrons.  

a group V vacancy would require t h e  removal of f i v e  electrons from the  

bonds, while t he  formation of a group I11 vacancy would require  the  re- 

moval of only three.  Presumably, then, more energy would be required t o  

move the  group V element i n t o  the  vacancy i n  i t s  Own subla t t ice .  

reasoning w a s  used t o  explain t h e  observed difference i n  diffusion rates 

between the two groups of host atoms. 

I n  a l l  

I f  diffusion i s  by means of neut ra l  atoms, the  f o r m t i o n  of 

This 

The sub la t t i ce  model w a s  a l s o  used t o  explain the  diffusion behavior 

of subs t i tu t iona l  impurit ies i n  InAs 1731 and G a A s  161. It was observed 

t h a t  the  impurit ies believed t o  be subs t i tu t iona l  on t h e  group I11 sub- 

l a t t i c e  had approximately the  same ac t iva t ion  energy regardless of 

whether they were donors (group I V )  or acceptors (group 11). 

w a s  true for impurit ies on t h e  group V sublat t ice ,  but t h e  ac t iva t ion  

energy w a s  l a rge r  than f o r  impurit ies on the  group I11 subla t t ice .  T h i s  

r e s u l t  w a s  consistent w i t h  the  self diffusion measurements. Thus f o r  

GaAs,  t h e  ac t iva t ion  energies of impurit ies on the  gallium sub la t t i ce  

were found t o  be: 2.49 eV (Zn), 2.43 e V  ( C d ) ,  2.5 eV (Sn), and 2.73 eV 

(Mn); for impurit ies on the  arsenic  sublat t ice ,  t he  corresponding values 

were: 4.0 eV (S), and 4.2 eV (Se) [66]. 

The same 

It should be pointed out tha t  t he  experimental r e s u l t s  presented as 

evidence f o r  t he  sub la t t i ce  model could a l s o  be in te rpre ted  simply by 

having a common mode of diffusion f o r  atoms on t h e  group I11 sublat t ice ,  

and another mode f o r  atoms on the  group V subla t t ice .  

ever, no strong evidence t o  ind ica te  t h a t  t he  basic  jump process w a s  t o  

a second-nearest-neighbor vacancy on t h e  same subla t t ice .  

There w a s ,  haw- 

S l i fk in  and Tomizuka had suggested that  a vacancy diffusion mechan- 

i s m  i n  a zincblende l a t t i c e  by means of jumps t o  nearest  neighbors, t h a t  

is ,  a movement not confined t o  a s ingle  sublat t ice ,  would result i n  equal 

diffusion coef f ic ien ts  f o r  both types of host atoms 1711. 
- 

Thus the  
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experimental observation t h a t  t he  self diffusion coeff ic ients  were 

d i f fe ren t  i n  a number of 1 1 1 - V  compounds l ed  t o  the  exclusion of diffu-  

sion by means of nearest-neighbor-vacancies as a possible model [1,721. 

Lidiard, however, pointed out t h a t  the  simple geometrical argument 

used by S l i fk in  and Tomizuka w a s  va l id  only i n  an a l l o y  with no long- 

range order. 

lishment of an equilibrium degree of order i n  the  l a t t i c e ,  Lidiard con- 

cluded t h a t  a diffusion mechanism by jumps t o  nearest-neighbor sites 

could s t i l l  lead t o  d i f fe ren t  diffusion coeff ic ients  f o r  t he  two compo- 

nents of a compound semiconductor [7=j]. 

By imposing a thermodynamic r e s t r i c t ion  re la t ing  t o  estab- 

In  addition t o  t h e  arguments presented above t h a t  indicate  t h a t  t he  

subla t t ice  m o d e l  of diffusion need not be invoked t o  explain t h e  experi- 

mental r e su l t s  of self and impurity diffusion i n  a number of 1 1 1 - V  com- 

pounds, there  appears t o  be some doubt about t he  va l id i ty  of t he  experi- 

mental evidence i tself .  An extensive review of self diffusion i n  1 1 1 - V  

compounds has been published by Kendall [2] who points out t h e  large vari-  

a t ion  among the  r e su l t s  of d i f fe ren t  experimenters. A s  an example, the  

act ivat ion energies of In  and Sb and InSb have been reported by Boltaks 

as 0.28 and 0.75 eV, respectively [76], by Eisen and Birchenall a t  1.82 

and 1.94 e V  [72], and by Kendall as 4.3 and 4.3 e V  [2]. 

example, Goldstein has reported the  act ivat ion energies of self diffu-  

sion of G a  and A s  i n  G a A s  as 3.6 e V  and 10.2 eV, respectively [ l ] .  

ever, Kendall reported several  measurements indicating an act ivat ion 

energy of 3.2 e V  for A s  self diffusion [2] i n  G a A s .  

A s  a fur ther  

HOW- 

Data on impurity diffusion i n  G a A s  a l s o  demonstrates such discrep- 

ancies. For example, Goldstein has reported an act ivat ion energy of 
4.04 e V  f o r  su l fur  diffusion i n  GaAs,  which w a s  i n  good agreement with 

h i s  value of 4.16 e V  f o r  Se [ l ] .  

since reported values f o r  sulfur ranging from 1.6 t o  2.6 e V  [2, t h i s  

work]. 

port  of t h e  subla t t ice  model of diffusion should be questioned. 

However, other experimenters have 

I n  view of these large differences, t h e  evidence claimed i n  sup- 

I n  order t o  formulate a meaningful model of diffusion processes i n  

compound semiconductors, t he  var ia t ion of diffusion coeff ic ient  with 
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component pressure, impurity concentration, and background doping of the  

c rys t a l  must be examined. 

Consider the  dependence of t h e  diffusion coef f ic ien t  of su l fu r  i n  

GaAs  on the  a rsen ic  pressure. The sub la t t i ce  model implies t h a t  t h e  

diffusion rate of impurit ies on the  a rsen ic  sub la t t i ce  should be propor- 

t i o n a l t o  the  concentration of arsenic  vacancies 141. Thus, 

where D i s  the  diffusion coeff ic ient ,  [V 1, t h e  arsenic  vacancy 

concentration, and K an equilibrium constant. From simple mass ac- 

t i o n  arguments, t h e  r e l a t ion  between the  arsenic  vacancy concentration 

and the  external  arsenic  pressure i s  

A s  

3’ 

Combining these two equations, it i s  found t h a t  

D = K ( P  ) -% 
5 A s 4  (5 .3 )  

A s  t he  arsenic  pressure increases, the  diffusion coef f ic ien t  should de- 

crease i f  t he  sub la t t i ce  model i s  valid.  

su l fu r  diffusion i n  GaAs,  however, a r e  not even i n  qua l i t a t ive  agreement 

w i t h  t h i s  prediction. A s  shown i n  Chapter 111, t h e  diffusion coeff ic ient  

var ies  as (Pns4)+’ a t  l o w  pressures, and i s  independent of arsenic  

pressure above 0.5-1 atmospheres. 

the  app l i cab i l i t y  of t h e  sub la t t i ce  model t o  su l fu r  diffusion i n  GaP 

s ince the  diffusion coef f ic ien t  of su l fur  i n  t h i s  material w a s  found t o  

be independent of phosphorus pressure. 

The experimental r e s u l t s  f o r  

A similar conclusion can be made about 

It i s  of some i n t e r e s t  t o  review t h e  l i t e r a t u r e  t o  determine the  

quant i ta t ive  e f f e c t  of component pressure on diffusion i n  other  1 1 1 - V  

systems. Such s tudies  have been neglected except f o r  self diffusion i n  
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InSb [771, Zn i n  GaAs 1781, Zn i n  GaP [l81, Se i n  G a  

GaAs f341. 
sion coeff ic ient  with component 

model has not been observed f o r  

t i v e  behavior of Sn 1221 and S i  E361 i n  GaAs appears t o  be an exception. 

However, t h e  amphoteric nature of these impurit ies complicates an in t e r -  

pretat ion of t he  experimental results. 

A t  t h e  present t i m e ,  it appears t h a t  t h e  va 

A t  l ow zinc concentrations, t he  diffusion coeff ic ient  of zinc i n  

GaAs w a s  found t o  be enhanced when the  arsenic  pressure w a s  increased 

[79] This observation suggests subla t t ice  diffusion. However, a more 

accurate quant i ta t ive determination of t h i s  re la t ionship a t  l o w  zinc 

concentrations would be extremely valuable i n  confirming t h i s  conclusion. 

For a jump t o  a second-nearest-neighbor vacancy t o  occur, an atom 

must squeeze between three atoms on the  opposite subla t t ice  1721. 
Longini has suggested that subla t t ice  diffusion i n  the  zincblende s t ruc-  

t u r e  must be d i f f i c u l t ,  and proposed as al ternat ives ,  t h e  divacancy and 

in t e r s t i t i a l - subs t i t u t iona l  modes of diff’usion [SO]. These models and 

their  application t o  su l fur  diffusion i n  Gap and GaAs  are discussed i n  

the  following sections. 

B. In te rs t i t i a l -Subs t i tu t iona l  Model 

Kendall has commented that the  diffusion of su l fur  i n  GaAs i s  qui te  

rapid when compared t o  the  rates of such impurities as Sn, M g ,  Cd, Zn, 

Se and T e  a t  t h e i r  l o w  concentration l i m i t ,  and has suggested t h a t  an 

in t e r s t i t i a l - subs t i t u t iona l  mode of diffusion could account f o r  t h i s  

observation E70 1. The in t e r s t i t i a l - subs t i t u t iona l  model has been used 

qui te  successfully i n  explaining the  dependence of the  diffusion coeffi-  

c ien t  of zinc i n  GaAs on temperature 1651, arsenic  pressure 1781, and 

zinc concentration [31], 

The diffusion p ro f i l e s  obtained i n  t h i s  study f o r  sulfur i n  GaAs 

a t  high su l fur  concentrations are characterized by a surface region of 

rapid ). Similar prof i les  
w e r e  ed f o r  Zn d ed t o  an i n t e r s t i t i a l -  



sl.ibstitutiona1 mode of diffusion r81.1. The ac t iva t ion  energies f o r  

both su l fur  i n  GaAs and Zn i n  InP appear t o  be similar (about 2 eV) .  

However, there are several  important differences i n  t h e  diffusion 

behavior t h a t  indicate  that the  diffusion mechanism may not be the  same 

f o r  the  two cases. The p ro f i l e s  f o r  Zn i n  InI? have a steep f ront  a t  
concentrations belaw lo1’ 
h i b i t  such behavior. The diffusion coeff ic ient  of S i n  GaAs a l s o  ap- 

pears t o  be 3-4 orders of magnitude less than that  of Zn i n  InP a t  equiv- 

a l en t  temperatures (which account fo r  t he  difference i n  melting points of 

t h e  two compounds). 

The p ro f i l e s  f o r  S i n  GaAs do not ex- 

It i s  of some in t e re s t  t o  compare the  experimental r e su l t s  f o r  sul-  

f u r  i n  GaAs  w i t h  the predictions of the in t e r s t i t i a l - subs t i t u t iona l  mo- 
del. 

coeff ic ient  on su l fur  concentration, arsenic  pressure, and Fermi level .  

The equilibrium between i n t e r s t i t i a l  and subs t i tu t iona l  su l fur  i s  given 

Par t icu lar  emphasis i s  placed on the  dependence of t he  diffusion 

by 

+ S? l + vAS ?t: sAS + e- 9 (5.4) 

where So i 
neutral) ,  and SAs 

donor on an arsenic  site). 

i s  t h e  su l fur  i n t e r s t i t i a l  (assumed f o r  t h e  moment t o  be 

i s  the subs t i tu t iona l  su l fur  (assumed t o  be t h e  usual + 
The mass act ion equation f o r  Eq. (5.4) i s  

where K and K are equilibrium constants. If it i s  assumed, i n  

analogy w i t h  Zn diffusion i n  GaAs, t h a t  
6 7 

1. su l fur  i s  present i n  t h e  c rys t a l  either as a neut ra l  
i n t e r s t i t i a l  o r  as an ionized subs t i tu t iona l  donor, 

2. most of t he  su l fur  i s  subs t i tu t iona l  ( t h i s  i s  a reasonable 
assumption a t  l o w  su l fur  concentrations), and 
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3. the  diffusion i s  dominated by the  i n t e r s t i t i a l  species, 

then from Eq. (5.5) and 1311, 

- 
where D i s  t h e  e f f ec t ive  diffusion coeff ic ient ,  and Di i s  the  in-  

t e rs t i t i a l  diffusion coeff ic ient .  

1, so t h a t  n = tSAsl = fCTdcal 

I n  i n i t i a l l y  undoped material, 
+ 

where fCTotal ] i s  t h e  t o t a l  su l fu r  concentration, I n  mater ia l  w i t h  a 

la rge  background concentration of donors [N,], n = [ND], and f + 

The model thus pred ic t s  t h a t  t he  diffusion coef f ic ien t  should vary as 

the  0.25 power of t h e  arsenic  pressure. 

sented i n  Chapter I11 for su l fu r  i n  GaAs  are not i n  quant i ta t ive  agree- 

ment with t h i s  model. 

The experimental r e s u l t s  pre- 

The i n t e r s t i t i a l - s u b s t i t u t i o n a l  model a l s o  pred ic t s  that the  d i f fu-  

sion coef f ic ien t  i n  i n i t i a l l y  undoped material should be dependent on 

the  first power of t he  su l fu r  concentration, thus leading t o  diffusion 

p ro f i l e s  w i t h  s teep fronts .  The model a l s o  pred ic t s  t h a t  diffusion i n  

GaAs heavily-doped w i t h  donor impurit ies should be g rea t ly  enhanced. 

These predictions are not i n  agreement with the  experimental r e s u l t s  

presented i n  Chapter 111. 

However, several  points  must be kept i n  mind when in te rpre t ing  t h e  

experimental r e su l t s .  F i r s t ,  t he  i n t e r s t i t i a l  su l fu r  has been assumed 
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t o  be a neut ra l  species [70]. 

experimental r e s u l t s  of chalcogen diffusion i n  1 1 - V I  compounds 174,821, 

Because of i t s  electronegativity,  however, su l fu r  might be expected t o  

be an i n t e r s t i t i a l  acceptor. Hawever, several  f ac to r s  make t h i s  unlikely. 

The la rge  s i z e  of t he  ionized acceptor species would g rea t ly  i n h i b i t  i t s  
incorporation i n t o  in te rs t i t i a l  sites 1831. I n  addition, t h e  dependence 

of diffusion coef f ic ien t  on concentration and Fermi l e v e l  would be even 

stronger than calculated previously f o r  t he  neut ra l  i n t e r s t i t i a l .  Pos- 
t u l a t ion  of an ionized i n t e r s t i t i a l  donor would lead t o  a diffusion co- 

e f f i c i e n t  t h a t  w a s  independent of concentration and Fermi level .  

though t h i s  assignment seems unl ikely i n  v i e w  of t h e  la rge  e lec t ro-  

negat ivi ty  of sulfur ,  it should not be ruled out completely. 

This assumption i s  consistent w i t h  t h e  

A l -  

Second, even assuming a neut ra l  i n t e r s t i t i a l ,  t he  prediction of a 

steep-fronted diffusion p r o f i l e  depends on having the  sulfur concentra- 

t i o n  much grea te r  than  the  i n t r i n s i c  c a r r i e r  concentration over a major 

portion of t h e  p r o f i l e  (it i s  noted t h a t  t h e  diffusion coef f ic ien t  should 

be independent of concentration i n  i n t r i n s i c  material) .  

should - be considerably enhanced i n  n-type mater ia l  provided t h a t  t he  n- 

tfrPe doping i s  much l a rge r  than the  i n t r i n s i c  c a r r i e r  concentration, and 

the  su l fu r  concentration i s  l e s s  than t h e  i n t r i n s i c  c a r r i e r  concentration. 

The diffusion 

The i n t r i n s i c  c a r r i e r  concentration i n  GaAs may be calculated using 
“ 1  

the  values of energy gap Eg, in te rva l ley  gap between t h e  (000) and 

(100) 
, f o r  electrons and holes given i n  the literature. 

conduction band minima A, and the density-of-states e f f ec t ive  mass 

These are 

Eg = 1.522 - 5,8 X l om4  T2(T+3O0)-l eV , C841 . 
(5.9) 

= 0.36 e V  , [85] 

and ( q o o / m O )  = 1.2 
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Using these parameters, n i (900°C) i s  calculated t o  be 2.2 x 9 

while n (100O'C) i s  5 X lox7 Results of so lub i l i t y  and d i f fu-  i 
sion experiments, however, suggest t h a t  n may be considerably la rger  

[87-89 I 
i 

From the  experimental p ro f i l e s  i n  Chapter 111 and t h e  preceding 
calculations,  it i s  c l ea r  t h a t  t h e  necessary conditions f o r  detecting 

diffusion coeff ic ients  t h a t  are dependent on concentration and Fermi 

l e v e l  have only been p a r t i a l l y  m e t .  Diffusions with lower surface con- 

centrat ions would have been a more sens i t ive  test .  However, the  spec i f ic  

a c t i v i t y  of the  radioisotope used was too  low t o  permit measurements un- 

der  these conditions. 

In  summary, t h e  experimental r e su l t s  of su l fur  diffusion i n  GaAs a r e  

not completely compatible with the  predictions of the  in t e r s t i t i a l - sub -  

s t i t u t i o n a l  model. The dependence of the  diffusion coeff ic ient  on arse- 

n i c  pressure i s  not i n  quant i ta t ive agreement with the  model. 

of t h e  non-ideal experimental conditions and the  large uncertainty i n  

n 

sion on t h e  Fermi level .  

In view 

no meaningful conclusion can be made about t h e  dependence of diffu-  i' 

The r e s u l t s  of Chapter I V  suggest t h a t  Kendall's values f o r  t he  

diffusion coef f ic ien t  of su l fur  i n  GaAs may be too  high because the  pres- 

ence of e l e c t r i c a l l y  inact ive impurit ies i n  t he  diffused layer  was not 

considered. 
4 .  

Thus, although the  in t e r s t i t i a l - subs t i t u t iona l  model cahnot 

be completely dismissed, t he  ra ther  l o w  values of diffusion coeff ic ient  

near t h e  melting temperature would suggest t h a t  a substi tutional* mechan: 

i s m  of diffusion i s  more l ike ly .  

C. Proposed Models of' Diffusion 

From t h e  previous sections i n  t h i s  chapter, it i s  c l e a r  t h a t  nei ther  

t h e  subla t t ice  model nor t he  in t e r s t i t i a l - subs t i t u t iona l  model can satis- 

f a c t o r i l y  explain t h e  diffusion behavior of sulfur i n  GaP and GaAs.  

t h i s  section, a l t e rna t ive  models are proposed. 

t h e  observed dependence of diffusion coeff ic ient  on component pressure 

and impurity concentration f o r  t h e  systems of in t e re s t .  

In 

These models can explain 
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1. Sulfur i n  GaP 

I n  Chapter 111, the  diffusion of su l fur  i n  GaP w a s  shown t o  be 

independent of component pressure over several  orders of magnitude i n  

phosphorus pressure. 

subla t t ice  or the  in t e r s t i t i a l - subs t i t u t iona l  models discussed previously. 

This dependence cannot be explained by e i t h e r  t he  

Because self diffusion of phosphorus i n  Gap i s  expected t o  be 

qui te  sluw, it might be thought t h a t  sulfur  diffusion i n  GaP could be in- 

dependent of phosphorus pressure simply because the  vacancy concentration 

would not have t i m e  t o  equi l ibrate  with the  external  vapor. However, ex- 

periments indicate  t h a t  t h e  diffusion rate of zinc i n  Gap can be changed 

s igni f icant ly  by varying the  phosphorus pressure [18]. 
p l i e s  t h a t  t h e  rate of equi l ibrat ion of vacancies w i t h  the  external vapor 

i s  a t  l e a s t  comparable t o  the  diffusion rate of zinc. Since zinc d i f fu-  

sion a t  high concentrations i s  much faster t h a n  su l fur  diffusion, it 

appears unlikely t h a t  the  non-equilibrium e f fec t  proposed i s  responsible 

f o r  the  lack of pressure dependence. 

This r e su l t  i m -  

A simple model t h a t  can explain the  lack of dependence of d i f -  

fusion on phosphorus pressure i s  t h a t  of diffusion by means of divacan- 

c ies .  From simple mass act ion equations, it can be shown t h a t  the  con- 

centration of divacancies, [V -V ], i s  a function only of temperature 

and i s  independent of phosphorus pressure [2]. 

i f  both vacancies are  neutral, or i f  they are oppositely charged. 

t h e  basic jump process, su l fur  on a phosphorus s i t e  presumably jumps t o  

the  phosphorus vacancy end of the  divacancy. Although the  basic jump t o  

a phosphorus vacancy i s  exactly the  same as i n  the  subla t t ice  model, the  

presence of the  gallium vacancy makes it unnecessary f o r  t he  diffusing 

atom t o  squeeze through the  space between the  three  gallium atoms as i s  

necessary i n  the  subla t t ice  model [ P I .  
l a t t i c e  i s  involved, diffusion by means of divacancies might be expected 

t o  be more rapid than the  process involving i so la ted  phosphorus vacan- 

cies. The divacancy model has previously been used i n  the l i t e r a t u r e  t o  

explain self diffusion i n  InSb [77] and PbS [82]. Divacancies have a l s o  

G a  P 
T h i s  re la t ion  i s  va l id  

In  

Since less d is tor t ion  of t h e  

been shown t o  be important defects i n  s i l i con  [go]. 
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There are other  models t h a t  can explain t h e  lack of pressure 

dependence of t h e  diffusion coeff ic ient  of su l fur  i n  Gap. 

i f  t he  diffusion w a s  by jumps i n t o  charged phosphorus vacancies, 

t h e  charge neu t r a l i t y  equation might be 

For example, 

V;, 

where N i  

such as a phosphorus i n t e r s t i t i a l  or a gallium vacancy. The concentra- 

t i o n  of charged phosphorus vacancies could then be independent of pres- 

sure over some pressure range. This poss ib i l i t y  has been used t o  explain 

t h e  Lack of pressure dependence of self diffusion of Zn i n  ZnTe [gl] and 

t h a t  of C d  i n  CdTe [92]. If t h i s  model were used t o  explain t h e  lack of 

pressure dependence f o r  su l fur  diffusion i n  Gap, t he  concentrations of 

these acceptor defects,  i n  order t o  dominate the  charge neut ra l i ty  equa- 

t ion,  would have t o  be much la rger  than t h e  su l fur  concentrations used 

i n  the  experiments described i n  Chapter 111. This implies impurit ies or  

nat ive defects  with concentrations grea te r  than lo1' The presence 

of a large number of acceptor impurit ies appears t o  be ruled out by H a l l  

measurements performed 03 t he  Gap crys ta l s  after ep i t ax ia l  growth (ad- 

mittedly a t  temperatures much lower than the  diffusion anneal). 

t he  presence of a large number of charged native defects a t  high temper- 

a tures  cannot be ruled out completely, there  i s  l i t t l e  evidence t o  sup- 

por t  t h i s  poss ib i l i t y  i n  Gap. 

i s  e i t h e r  an acceptor impurity, or a nat ive acceptor defect 

Although 

Although the  lack of pressure dependence of su l fur  diffusion 

i n  GaP can be explained sa t i s f ac to r i ly  by the  divacancy model discussed 

previmsly,  t h e  nature of t he  prof i les  a t  high su l fur  concentrations 

must a l s o  be explained. A s  seen i n  Chapter 111, prof i les  with surface 

Concentrations above lo2' ~ m ' ~  are characterized by an i n i t i a l  surface 

layer  of rapidly decreasing sulfur  concentration, followed by a deeper 

region t h a t  i s  more well-behaved. Similar p ro f i l e s  were reported when 

phosphorus w a s  diffused i n t o  GaAs [93]. 

Since t h e  p ro f i l e s  a t  high su l fur  concentrations are not simple 

complementary e r ro r  functions, they cannot be characterized by a s ingle  

diffusion coeff ic ient ,  H a l l ' s  modification [ 3 O ]  of the  Boltzmann-Matano 
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technique w a s  used t o  evaluate the concentration dependence of t he  

diffusion coef f ic ien t  of su l fur  i n  Gap.  Figure 3la shuws t h a t  t he  pro- 

f i l es  sca le  as the  square root of t i m e ,  indicat ing t h a t  t h e  diffusion 

coef f ic ien t  i s  dependent only on concentration, but  not on t i m e ,  and t h a t  

it i s  valid t o  use the  Matano analysis  [941. 

The dependence of the  diffusion coef f ic ien t  on su l fu r  concen- 

t r a t i o n  obtained f r o m t h e  p ro f i l e s  i n  Fig. 3la i s  shmn i n  Fig. 3lb. 
Only the  qua l i t a t ive  aspects of t h i s  re la t ionship are stressed here. It 

i s  c l ea r  from Fig. 3lb tha t ,  a t  high su l fur  concentrations, t h e  diffu- 

sion coef f ic ien t  decreases with increasing concentration. This i s  i n  

contrast  t o  t he  diffusion behavior of Zn i n  G a A s  and P i n  S i  a t  high 

impurity concentrations [3l, 62 1. 
s ion coef f ic ien t  increases  w i t h  increasing concentration. 

In  t h e  la t ter  two systems, t h e  d i f fu-  

In  Chapter I V ,  it w a s  shown t h a t  a t  high su l fu r  concentrations, 

a la rge  concentration of t h e  su l fur  atoms i n  GaP i s  not e l e c t r i c a l l y  ac- 

t i v e  a t  room temperature. The neut ra l  complex VGaS3 w a s  proposed t o  

explain t h i s  observation. 

can a l s o  be qua l i ta t ive ly  understood i n  terms of t he  same complex. 

following assumptions are made: 

The diffusion behavior a t  high concentrations 

The 

(1) A t  high concentrations under diffusion conditions, most 

'Gas 3 of t he  su l fur  i s  i n  the  form of complexes, 

(2 )  Sulfur atoms i n  t h e  complex are r e l a t i v e l y  immobile 1401. 

(3) Isolated subs t i tu t iona l  su l fu r  donors S; are r e l a t ive ly  
with 'Ga"P mobile, and d i f fuse  by means of divacancies 

a diffusion coef f ic ien t  D 
W' 

In analogy with other  two-stream diffusion processes such as 

i n t e r s t i t i a l - s u b s t i t u t i o n a l  diffusion, the e f fec t ive  diffusion coeff i -  

c ien t  E311 is :  
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DISTANCE BELOW SURFACE, x (microns) 

4 

a. Diffusion prof i les  for various times 

lo-", 

I I 
. 

I oi8 I oi9 I O2O IO2l 

SULFUR CONCENTRATION, [SI (cm-3) 

b. Dependence of the  diffusion coeff ic ient  on su l fur  concentrat.on 

Fig. 31. CONCENTRATION DEPEDDENCE OF THE DIFFUSION COEFFICIENT OF 
FUR IN Gap AT 1215OC AS DEITERMINED FROM A BOLTZMANN-MATANO 

ANALYSIS. 
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The equilibrium between the  mobile and immobile forms of su l fur  i s  

The corresponding 

+ 3 sP + 3 e- + V ~ ~ T I V  G a  s 3 

mass act ion 

[v S I =  
G a  3 

equation i s  

. 

In  t h e  ex t r ins ic  region, Eq. (5.13) becomes 

From Eqs. (5.11) and (5,14), it can be shmn t h a t  

(5.12) 

(5.1-3) 

Equation (5.15) implies t h a t  the  diffusion coeff ic ient  should decrease 

at  high su l fur  concentrations, because a smaller f rac t ion  of the  t o t a l  

su l fur  i s  free t o  move, 

t h i s  discussion t o  be the  complex the  same qual i ta t ive  r e su l t  

would have been obtained f o r  any model which invoked an immobile mole- 

cu lar  majority species a t  high su l fur  concentrations. 

G a  S (which can be thought of as a macroscopic c luster ing of i so la ted  

complexes) might be responsible for the  shape of t h e  diffusion prof i les  

a t  high su l fur  concentrations [1,93]. It i s  noted, however, t h a t  t he  

diffusion temperature at  which the  p ro f i l e s  i n  Fig. 3la were obtained 

(1215OC) i s  considerably higher than the  melting temperature of G a  S 

(1090°C) e 

G a  s 
t o  do isoconcentration diffusions at high su l fur  concentrations t o  see i f  

complementary e r ro r  function p ro f i l e s  were obtained, and t o  determine 

quant i ta t ively t h e  dependence of diffusion coeff ic ient  on su l fur  con- 

centration. 

Although the immobile species has been taken i n  

VGaS3, 

A second phase of 

2 3  

2 3  
Under equilibrium conditions a t  the  diffusion temperature, 

should not ex i s t  as a s tab le  so l id  phase, It would be in te res t ing  2 3  
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2. Sulfur i n  G a A s  

I n  Chapter 111, the  diffusion coeff ic ient  of su l fur  i n  G a A s  

f o r  su l fur  concentrations less than lo1' 

of arsenic  pressure above 0.5-1 atmospheres, and varied as (PAs4)' a t  

lower pressures. This var ia t ion cannot be explained by e i the r  the  sub- 

l a t t i c e  or the  in t e r s t i t i a l - subs t i t u t iona l  models. 

f o r  the  knee i n  the  D versus  PA^ curve w e r e  proposed i n  Chapter I11 

and t h e i r  l imitat ions were pointed out. 

w a s  shown t o  be independent 

Possible explanations 

4 

In  t h i s  section, a model i s  proposed t o  explain both the  

M PA^^)' dependence a t  l o w  pressures and the  appearance of t he  knee a t  

higher pressures. 

diffusion. A t  r e l a t ive ly  l o w  concentrations, su l fur  i s  assumed t o  be 

present i n  t w o  forms, one mobile, the  other immobile. The immobile spe- 

cies,  C2, can in t e rac t  with a gallium divacancy, VGa-VGa, t o  form 
the  mobile species, C The l a t t e r  species, C1, moves with a diffusion 

coeff ic ient  of D1. 
a tu re  t o  explain Mn diffusion i n  GaAs [34]. The e l e c t r i c a l  and solu- 

b i l i t y  behavior of Cu i n  GaAs has been explained by impurity interact ion 

with a divacancy on t h e  opposite subla t t ice  [15,451. 

This model again invokes the  double-stream process of 

1' 
An arsenic  divaicancy has been proposed i n  the  l i ter-  

In  the  model proposed here t o  explain su l fur  diffusion i n  GaAs,  

t he  equilibrium between the  mobile and immobile species i s  given 

and the  corresponding 

The concentration 

- + C  '2 4- 'Ga"Ga 1 ' 

mass act ion equation i s  

[C,] [VGa-VGal = K9 [C,] 

of gallium divacancies i s  

)% 
['Ga-'Ga = K10(pAs4 9 

(5.17) 

(5.1-8) 
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and the  ''conservation-of - su l f i r "  equation i s  

Solving Eqs. (5.17), (5.18), and (5.19), it i s  found that  

Ell = ['Total 1 

and 

(5.21) 

The K ' s  i n  t he  above equations are equilibrium constants. In  analogy 

with the  in t e r s t i t i a l - subs t i t u t iona l  model [3l], the  e f fec t ive  diffusion 

coeff ic ient  i s  given by 

. 

The var ia t ion of diffusion coeff ic ient  w i t h  arsenic  pressure predicted 

by the  model agrees w i t h  the  experimental resu l t s .  A t  l o w  arsenic  pres- 

~ sures, t h e  concentration of gallium vacancies, and a l s o  gallium divacan- 

cies by Eq. (5.18) i s  low. 

C1, 
i s  low. 

Thus the  concentration of the  mobile species, 

given by Eq. (5.20) i s  small, and the  e f fec t ive  diffusion coeff ic ient  

A s  the  arsenic  pressure increases, however, t he  number of gal- 

lium divacancies increases, as does the  concentration of 

a corresponding increase i n  the  effect ive diffusion coeff ic ient .  Fin- 

a l l y  a t  some high arsenic  pressure, essent ia l ly  a l l  of the sulfur  i s  i n  

the  mobile form, and the  e f fec t ive  diffusion coeff ic ient  saturates  a t  

C1. There i s  
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t he  value of D1, 
complex C1. 

which i s  simply t h e  diffusion coef f ic ien t  of t he  

Thus far the exact nature of the  species C, and C, has not 
+= I 

been discussed. A reasonable assignment f o r  C2 would be SAs, t h a t  is, 

the  usual subs t i t u t iona l  donor on an  a rsen ic  site. C1 would then be the  
+ complex VGa -s As -v Ga, a subs t i t u t iona l  su l fu r  atom i n  a complex w i t h  a 

gallium divacancy. The gallium vacancies have been assumed neut ra l  i n  

t h i s  model, and C1 and C2 have the same charge state, so t h e  d i f fu-  

sion rate would not be affected by a change i n  the  Fermi leve l .  

i n  agreement w i t h  the  experimental r e s u l t s  described i n  Chapter 111. 

T h i s  i s  

If  the  gallium vacancy w e r e  assumed t o  be an acceptor, t h i s  

C1 w a s  a l s o  negatively charged ( t o  preserve charge would imply t h a t  

neu t r a l i t y  i n  Eq. (5.16)). 
t o r  states of su l fu r  would naw be changed by var ia t ions i n  the  arsenic  

pressure. Hawever, as discussed i n  Chapter I V ,  t h e  experimental r e s u l t s  

ind ica te  that the  electron concentration i n  sulfur-doped G a A s  appears 

t o  be independent of t he  a rsen ic  pressure. I n  addition, t h e  saturat ion 

behavior of the  diffusion coef f ic ien t  cannot be explained i f  the  gallium 

vacancy were assumed t o  be an  acceptor. Thus, i f  t h e  gallium divacancy 

model proposed here i s  valid,  t h e  gallium vacancy must be assumed t o  be 
neut ra l  . 

The equilibrium between the  donor and accep- 

,I . 

Although the  mass ac t ion  equations ind ica te  that  diffusion by 

means of gallium divacancies i s  a possible mechanism f o r  su l fu r  diffusion 

i n  GaAs, t h e  de ta i led  atomic jump process i s  not known. It i s  reasonable, 

however, t o  assume that a d i r e c t  exchange between sulfur on an arsenic  

site, and an a rsen ic  atom (not an arsenic  vacancy as i n  t h e  subla t t ice  

model) a t  the  second-nearest-neighbor posi t ion can be considerably en- 

hanced i n  the presence of a gallium divacancy. 

only a small f r ac t ion  of the su l fu r  or arsenic  atoms were on the  gallium 

s i te  during the  interchange process, it would be d i f f i c u l t  t o  detect  t h e  

presence of these an t i s t ruc tu re  defects.  

I f  a t  any given t i m e  

Another assignment that  gives t h e  same pressure dependence 

that w a s  measured experimentally i s  l e t t i n g  

s t i t i a l  sulfur donor, 

C 1 
SI, which can react  w i t h  an arsenic  divacancy 

be a mobile i n t e r -  
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+ . This i s  e s sen t i a l ly  a 

modified version of t he  i n t e r s t i t i a l - s u b s t i t u t i o n a l  model, and i s  more 

i n  agreement with t h e  defect s t ruc ture  of GaAs a t  high temperatures i n  

undoped material. 

occurred on t.he arsenic,  not the  gallium, subla t t ice  w i t h  a vacancy 

'AC'AS 
t o  form the  immobile complex 

'AS-'AS 

Pot t s  and Pearson reported t h a t  t h e  pr inc ipa l  vacancy 

concentration a t  l l O O ° C  of 1.8 x los9 emm3 [95]. If t h i s  assignment of 

Cl and C2 were assumed, then i n  the  saturat ion region a t  high arsenic  

pressures, most of t he  sulfur would be i n  the  i n t e r s t i t i a l  posit ion.  

Under our experimental conditions, i n t e r s t i t i a l  Concentrations of nearly 

1019 emw3 are implied. 

s t i t i a l  s o l u b i l i t i e s  i n  G e  and Si.  

T h i s  seems ra ther  high, i n  comparison with in t e r -  

I n  pr inciple  it i s  possible t o  ca lcu la te  t h e  so lub i l i t y  of 

i n t e r s t i t i a l  su l fur  i n  G a A s  using a theory developed by Weiser f o r  G e  

and S i  [96]. 

the  r e s u l t  would seem t o  be removed from f i r m  experimental data by too  

many s teps  of approximation. The only other re la ted  r e s u l t  concerns 

su l fur  diffusion i n  s i l i con  [97]. In  s i l icon,  su l fur  appears t o  be a 

double donor as would be expected if it were a subs t i tu t iona l  impurity. 

However, t he  diffusion coeff ic ient  i s  qui te  la rge  

a t  12OOOC)  and seems t o  be i n t e r s t i t i a l l y  controlled.  

t he  much smaller diffusion rates obtained i n  t h i s  study would suggest 

t h a t  su l fur  diffusion i n  GaAs i s  not controlled by an i n t e r s t i t i a l  

species. 

However i n  practice,  too many parameters are unknown, and 

(D = 6 x lom8 cm2/sec 

A comparison w i t h  

Up t o  t h i s  point, t h e  discussion has been concerned w i t h  

models t o  explain t h e  var ia t ion of diffusion w i t h  arsenic  pressure f o r  

su l fur  concentrations less than 1019 ems3 (the experimental data re- 

ported i n  Chapter I11 w e r e  taken under these conditions). 

centrations,  most of t h e  su l fur  could be assumed t o  be e l e c t r i c a l l y  

ac t ive  a t  t he  diffusion temperature. A t  higher concentrations, t he  

p ro f i l e s  exhibi t  t h e  same behavior discussed previously f o r  Gap. 

l i k e l y  t h a t  t he  same mechanism is  responsible f o r  t he  high concentration 

behavior of su l fur  i n  both GaP and GaAs. 

A t  these con- 

It i s  

The e f f ec t  of arsenic  pressure has a l so  been studied f o r  d i f -  
20 -3 fusions when the  surface concentration w a s  3-5 x 10 em . The r e s u l t s  
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are shown i n  Fig. 32. The diffusion increases as the  arsenic pressure 

increases, but a t  a slower rate than w a s  observed a t  lower su l fur  con- 

centrations.  This behavior i s  not understood a t  the  present t i m e ,  but 

it does i l l u s t r a t e  the necessity of specifying precisely the  conditions 

under which experiments are done. 

T= 1130" C 
t =  I hr 

[Sv] = 6 Crglrnl 

x 5.9 mg/ml 
[AS"] = 0 NONE 

\ I  I I n 
I U  ~ 0 2 4 6 8 1 0 1 2 1 4  

DISTANCE BELOW SURFACE, x(microns) 

Fig. 32. DIFFUSION PROFILES OF SULFUR I N  GaA.s AT VARIOUS ARSE- 
N I C  PRESSURES. The apparent dependence of t he  diffusion co- 
e f f i c i en t  on the  arsenic pressure i s  weaker a t  these high 
su l fur  concentrations (compare w i t h  Fig. 2 0 ) ,  

The experimental r e su l t s  discussed i n  t h e  previous section 

indicated t h a t  t h e  diff'usion of su l fur  i n  GaP appeared t o  be independent 

of pressure. However, t he  surface concentration i n  t h i s  experiment w a s  

lo2' In  v i e w  of t he  r e su l t s  f o r  su l fur  diffusion i n  GaAs a t  high 

su l fur  concentrations, it seems desirable  t o  repeat the  Gap experiment 

a t  l o w  su l fur  concentrations. ' 
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D. Solid Solubi l i ty  Versus Vapor Pressure of Gaseous Impurities 

Diffusion experiments give information about t h e  movement of i m -  

p u r i t i e s  i n  crystals .  In  previous sections of t h i s  chapter, models that  

explain t h e  dependence of t he  diffusion coef f ic ien t  on component pressure 

and impurity concentration f o r  su l fu r  i n  Gap and G a A s  have been discussed. 

Diffusion experiments can a l s o  give information about t he  dependence 

of so lub i l i t y  on impurity and component pressure. If an i n f i n i t e  source 

i s  provided and no surface rate l imi ta t ion  i s  present, t h e  surface con- 

centrat ion of t h e  diffusion p ro f i l e  should represent t h e  so lub i l i t y  under 

diffusion conditions. The usual model f o r  incorporating su l fur  donors 

from t h e  vapor phase i n t o  phosphorus sites i n  a Gap c rys t a l  can be de- 

scribed by the  reaction 

1 + 
2 2  - s (vapor) + vP* sP + e- 

The corresponding mass act ion equation i s  

L S P ~ I  n = K 12 (P s2 1% [V,I 

I n  ex t r ins ic  material, the  r e s u l t s  may be rewrit ten 

[SPfl = (K12)% (Ps )' (Pp )-% 
2 2 

(5.23) 

Thus the  simple model predicts  t h a t  the  so lub i l i t y  should increase as 

t h e  0.25 puwer of t h e  su l fur  pressure Ps2. 

The experimental results i n  Chapter I11 indica te  c l ea r ly  t h a t  t h i s  

dependence i s  not observed. The dependence of t he  surface concentration 

on the  su l fu r  pressure f o r  both Gap and GaAs  w a s  found t o  be considerably 

stronger, as given by the  re la t ion  

(5.26) 
W 

surface concentration = [ S  1 7 v 
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where [Sv] i s  the  su l fur  vapor density, and w i s  1.3 f o r  Gap a t  

1215'C and 1.0 f o r  GaAs  a t  lS3O"C. Figure 11 indicates  t h a t  the  su l fur  
vapor should be predominantly i n  the  form of diatomic molecules f o r  t he  

diffusion conditions i n  t h i s  study. Thus Eq. (5.26) can be rewrit ten as 

surface concentration a (P )" (5.27) 
s2 

A limited number of experiments indicated t h a t  t he  p ro f i l e s  scaled as 

the  square root of t i m e  and t h a t  t h e  surface concentration w a s  r e l a t ive ly  

independent of t i m e .  Thus, t he  assumption of an i n f i n i t e  source seems t o  

be valid.  

If, as suggested by the  nature of the p ro f i l e s  and the  e l e c t r i c a l  

a c t i v i t y  of t he  su l fur  a t  high concentrations, t he  su l fur  i s  predomi- 

nantly i n  t h e  form of the  complexes the so lub i l i t y  should vary 

as the  3/2  power of the su l fur  pressure. The reaction fo r  formation of 
these complexes can be wri t ten as 

VGaS3, 

The corresponding mass act ion equation 

which can be rewrit ten as 

3 v p * v  G a  s 3 (5.28) 

i s  

> 
rvGa 1 [vp 1 3 (5.29) 

[V S 1 = K (P )3/2 (P )-I 
G a  3 15 s2 p2 

(5.30) 

Thus there  should be a strong dependence of so lub i l i t y  on phosphorus 

pressure i f  the  su l fur  i s  predominantly i n  complex form. 

shows t h a t  t h i s  w a s  not observed. 
Figure 14 
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It should be noted t h a t  t h e  r e su l t s  reported here from diffusion 

s tudies  are i n  disagreement w i t h  t he  results of Trumbore e t  a1 [39] which 

w e r e  obtained from c r y s t a l  growth experiments a t  a somewhat lower temper- 

ature.  They found t h a t  t he  incorporation of su l fur  from a gallium-rich 

solut ion i n t o  t h e  GaP c r y s t a l  obeyed Eq. (5.25) f o r  su l fur  concentrations 

i n  t h e  c r y s t a l  between 2 x lox9 and 5 x 1019 cmm3. 

t ions,  incorporation of su l fur  i n  t h e  so l id  w a s  less than expected. Th i s  

behavior w a s  la ter  a t t r i bu ted  [98] t o  a non-equilibrium process involving 

a face t  e f fec t  [991. 

A t  lower concentra- 

A possible reason f o r  t h e  anomalous behavior of surface concentra- 

ti.on with su l fur  vapor pressure reported i n  Chapter I11 i s  a non-equili- 

brium steady-state phenomenon a t  the  surface of t h e  c rys ta l ,  perhaps 

caused by the  necessi ty  t o  dissociate  t h e  diatomic sulfur vapor i n t o  t h e  

atomic species. This model has been proposed t o  explain anomalous ef- 

f e c t s  when Sb i s  diffused i n t o  G e  [ 3 2 ] .  

diffused i n t o  GaP of various or ientat ions would be helpful  i n  evaluating 

t h i s  model since or ientat ion e f f ec t s  have been observed i n  @As and GaP 

c rys t a l s  grown by vapor phase epitaxy [loo-1021. 

Experiments i n  which su l fur  i s  

Another poss ib i l i t y  t h a t  should be considered i s  a modified gas 

phase. In  discussing the  var ia t ion of surface concentration with su l fur  

pressure, it has been assumed tha t  t he  su l fur  i s  predominantly i n  the  

form of diatomic molecules. 

l ibrium constants (Fig. 11) ind ica te  t h a t  t h i s  should be t r u e  providing 

there  i s  no in te rac t ion  between t h e  su l fur  and other gaseous species. 

J. Arthur of B e l l  Laboratories has found t h a t  G a  Te  i s  an important 

species i n  the  vapor phase i n  the  GaAs-Te system [lO3]. 

gous species, G a  S, were predominant under our dif-rusion conditions, 

t he  predicted results, a t  least a t  lower su l fur  concentrations, would be 

more i n  agreement with the  observed experimental results f o r  t h e  follow- 

ing reason. If most of t he  su l fur  were present i n  the vapor phase as 

Ga2S then 

Calculations based on high temperature equi- 

2 
If t h e  analo- 

2 

[Ga2Sl = (5.31.) 
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A possible react ion f o r  incorporation of su l fur  i n t o  the  so l id  i s  

Ga2S(vapor) + V - +sP + + e- + 2 -(vapor) . B 

In ex t r in s i c  GaP t h e  mass act ion equation after some manipulations 

becomes 

+ )% (p  )% 
[‘PI = K16(pGa2S p2 

. 
The use of t h e  perfect  gas l a w  together w i t h  

(5.32) 

( 5 *  33) 

Eqs. (5.31) and (5.33) yields  

I . ( 5 *  34) 

Equation (5,34) indicates  t h a t  the  so lub i l i t y  should depend only weakly 

on the  phosphorus pressure, but should vary as t h e  0.50 power of t he  

su l fur  vapor density. Although it does not account f o r  t h e  observed 

var ia t ion w i t h  [Sv], it does indicate  a s tep  i n  the  r igh t  direction. 

Anomalous effects have been reported i n  t h e  l i t e r a t u r e  for arsenic  d i f -  

fusion i n  Ge,  and a t t r i bu ted  t o  a modified gas phase [l04]. 

A t h i r d  poss ib i l i t y  t o  account f o r  t he  anomalous r e su l t s  of surface 

concentration reported here i s  the  formation of a second phase, such as 

t h e  compound G a  S a t  t he  surface [l]. However, as noted i n  section 

C . l  of t h i s  chapter, the  diffusion i n  Gap a t  l2l5OC takes place above 

the  melting point of a l l  Ga-S compounds, and s t i l l  exhibi ts  the  anom- 

alous behavior. Experiments a t  lower temperatures would be helpful  i n  

evaluating t h i s  poss ib i l i ty .  

2 3’ 

A t  t h i s  time, it i s  not possible t o  propose a de f in i t e  model t o  

explain t h e  anomalous dependence of t h e  surface concentration on the  

su l fur  vapor densi ty  during diffusion. 

81 SEL- 69 - 01.7 





PRECEDING PAGE BLANK NOT FILMED. 

Chapter V I  

CONCLUSION 

The purpose of t he  research reported here w a s  t o  invest igate  the  

diffusion of su l fur  i n  Gap and GaAs  t o  determine t h e  relevant diffusion 

mechanisms. 

d i t i ons  has been stressed, and t h e  necessity of determining the  quanti- 

t a t i v e  dependence of t h e  diffusion coeff ic ient  on component pressure has 

been emphasized i n  view of t he  inadequacies of previous investigations.  

The importance of uniquely defining the experimental con- 

In  the work reported here, a c r i t i c a l  analysis  of previous s tudies  

of su l fur  diffusion i n  GaAs has been presented. 

have been shown t o  be inadequate f o r  elucidating t h e  relevant diffusion 

mechanisms f o r  several  reasons. First, no quant i ta t ive measurement of 

t he  dependence of t he  diffusion coeff ic ient  of su l fur  i n  GaAs on arsenic  

pressure has been reported. 

ne i ther  specif ied nor controlled i n  previous investigations.  

p-n junction techniques have frequently been used t o  determine diffusion 

coeff ic ients .  However, the  poss ib i l i t y  of t he  presence of e l e c t r i c a l l y  

inac t ive  impurit ies i n  the  diffused layers  has not been considered. 

Finally, t h e  only experimental evidence t o  support t he  model of vacancy 

diffusion within the  arsenic  subla t t ice  t h a t  w a s  proposed f o r  su l fur  d i f -  

fusion i n  G a A s  has been t h e  ac t iva t ion  energy of t h e  diffusion coeff i -  

c ien t  determined by Goldstein. However, these r e s u l t s  appear t o  be 

Previous investigations 

I n  fac t ,  t he  arsenic  pressure w a s  often 

Second, 

unrel iable  due t o  vapor etching of t he  samples and possibly neglect of 

t h e  significance of t he  arsenic  pressure. The va l id i ty  of t h e  previously 

mentioned subla t t ice  model i s  subject t o  question because of these 

uncertaint ies .  

A summary of t h e  experimental results of t h i s  study and some sug- 

gestions f o r  fu ture  research are presented i n  the  following sections. 

A. Summary of Experimental Results 

I. The quant i ta t ive  dependence of t h e  diffusion coeff ic ient  of 

su l fur  i n  Gap and GaAs on component pressure has been mea- 

sured. Sulfur diffusion i n  Gap w a s  found t o  be independent 
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of phosphorus pressure, wh i l e  t he  diffusion coeff ic ient  of 

sulfur  i n  G a A s  varied as 
and saturated a t  pressures greater  than 0.5-1 atmosphere, 

Both of these observations are i n  conf l ic t  w i t h  t he  predic- 

t ions  of the  subla t t ice  model of vacancy diffusion within the  

anion subla t t ice  that  has been proposed i n  the l i t e r a t u r e  t o  

explain the  diffusion of subs t i tu t iona l  impurities i n  1 1 1 - V  

compounds. The diffusion of su l fur  i n  GaP i s  consistent w i t h  

a model of diffusion v ia  the  divacancy VGa-Vp, wh i l e  su l fur  

diffusion i n  GaAs can be explained by movement v i a  t he  gallium 

divacancy 

i n  t h i s  study per ta in  t o  two specif ic  systems, a review of t he  

l i t e r a t u r e  indicates  t h a t  the  f a i l u r e  of t h e  previously men- 

tioned subla t t ice  model t o  explain the  dependence of impurity 

and self diffusion on component pressure may be a general 

phenomenon i n  1 1 1 - V  compounds. 

 PA^^)' a t  l o w  arsenic  pressures, 

-V . Although the  experimental r e su l t s  obtained 
'Ga G a  

2. Sulfur diffusion i n  GaP and GaAs has been studied as a func- 

t i o n  of the su l fur  vapor density. A t  l o w  concentrations, t h e  

diffusion p ro f i l e s  were found t o  be well-behaved and f i t  com- 

plementary e r ro r  function solutions of the diffusion equation 

reasonably w e l l .  However, f o r  surface concentrations grea te r  

than lo2' emm3, the  p ro f i l e s  were not well-behaved, and could 

not be characterized by a concentration-independent diffusion 

coeff ic ient .  The dependence of the surface concentration on 

the  su l fur  vapor densi ty  w a s  found t o  be i n  disagreement w i t h  

t he  usual model of incorporation of su l fur  atoms on i so la ted  

anion sites. 

3. The doping eff ic iency of su l fur  i n  GaAs has been studied, 

both i n  diffused layers,  and i n  a homogeneous melt-grown crys- 

ta l .  A t  high concentrations, a large concentration of t he  

su l fur  w a s  found t o  be e l e c t r i c a l l y  inactive.  T h i s  observa- 

t i o n  i s  of p rac t i ca l  importance since previous reports  i n  t h e  

l i t e r a t u r e  concerning su l fur  diffusion i n  GaAs have often as- 

sumed complete ionization of t he  impurit ies i n  the diffused 
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layer .  

t i o n  may be i n  error .  

t ha t  t h e  room temperature e lectron concentration i n  the sulfur-  

doped melt-gruwn GaAs c r y s t a l  could be reversibly controlled by 

suitable annealing, and t h a t  t h i s  concentration w a s  independent 

of t h e  a rsen ic  pressure during the  anneal. For a given anneal- 

ing temperature, t he  electron concentration i n  t h e  melt-grown 

c r y s t a l  w a s  s ign i f i can t ly  higher than t h e  maximum electron con- 

centrat ion i n  GaAs doped by diffusion a t  the  same temperature. 

Thus the doping eff ic iency of su l fu r  i n  GaAs appears t o  depend 

not only on thermodynamic variables,  such as su l fur  concentra- 

t ion,  a rsen ic  pressure, and temperature, but on the  method of 

doping as w e l l .  It i s  suggested t h a t  the  difference may be 

due, i n  par t ,  t o  prec ip i ta t ion  due t o  stresses induced i n  t h e  

c r y s t a l  during t h e  diffusion process. 

Diffusion coef f ic ien ts  calculated using t h i s  assump- 

I n  the  work reported here, it w a s  shown 

B. Suggestions f o r  Future Research 

A number of experiments would be helpful  i n  bringing i n t o  perspec- 

t i v e  the  r e s u l t s  of t h i s  study. There i s  a need f o r  more quant i ta t ive 

data r e l a t ing  t o  t h e  dependence of t he  diffusion coef f ic ien t  on compo- 

nent pressure f o r  both self and impurity diffusion i n  1 1 1 - V  compound 

semiconductors. In  par t icular ,  s tudies  of diffusion i n  GaAs as a func- 

t i o n  of arsenic  pressure would be useful t o  determine i f  the  apparent 

saturat ion behavior of the  diffusion coef f ic ien t  of su l fur  a t  high 

a rsenic  pressures i s  unique t o  the  GaAs-S system or  i f  t h i s  behavior i s  

r e l a t ed  t o  a more fundamental property of t he  defect s t ruc ture  of GaAs. 

Isoconcentration diffusions i n  both GaP and GaAs would be helpful  Yn 

evaluating t h e  t r u e  concentration dependence of t h e  diffusion coeff ic ient  

of sulfur i n  high concentrations. Electron d i f f r ac t ion  s tudies  should be 

made t o  determine i f  compound formation i s  a major influence on t h e  dif-  

fusion behavior a t  high sulfur concentrations. 

More de ta i led  information about the  gas phase equ i l ib r i a  i n  the  

ternary system under diffusion conditions would be helpful  i n  explaining 

the  anomalous dependence of the  surface concentration on the  su l fur  vapor 

densi ty  . 
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